mark for pull
This commit is contained in:
@@ -0,0 +1,10 @@
|
||||
package com.cnbm.processInspection.constant;
|
||||
|
||||
/**
|
||||
* @Desc: ""
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/8/3 10:01
|
||||
*/
|
||||
public class Constant {
|
||||
public String measureMent = "WeightHeiHei";
|
||||
}
|
||||
@@ -7,9 +7,14 @@ import com.cnbm.common.spc.math.StandardDiviation;
|
||||
import com.cnbm.common.spc.util.DataUtils;
|
||||
import com.cnbm.common.vo.R;
|
||||
import com.cnbm.influx.constant.Constant;
|
||||
import com.cnbm.influx.param.QueryDataGroupByTimeParam;
|
||||
import com.cnbm.influx.param.QueryDataParam;
|
||||
import com.cnbm.influx.param.Range;
|
||||
import com.cnbm.processInspection.dto.*;
|
||||
import com.cnbm.processInspection.graphAnalyzed.forCount.c.CGraph;
|
||||
import com.cnbm.processInspection.graphAnalyzed.forCount.np.NPGraph;
|
||||
import com.cnbm.processInspection.graphAnalyzed.forCount.p.PGraph;
|
||||
import com.cnbm.processInspection.graphAnalyzed.forCount.u.UGraph;
|
||||
import com.cnbm.processInspection.graphAnalyzed.forMeterage.mr.MeanRGraph;
|
||||
import com.cnbm.processInspection.graphAnalyzed.forMeterage.ms.MeanStandardDeviationGraph;
|
||||
import com.cnbm.processInspection.graphAnalyzed.forMeterage.xmr.XMRGraph;
|
||||
@@ -36,9 +41,6 @@ public class ProcessInspectionController {
|
||||
|
||||
@PostMapping("/XbarSGraphTest")
|
||||
public R<XbarSGraphData> xbarSGraphTest() throws Exception {
|
||||
ProductFeaturesDTO productFeaturesDTO = productFeaturesService.get(new Long(1));
|
||||
|
||||
|
||||
ProductFeatures productFeatures = new ProductFeatures();
|
||||
productFeatures.setSl(new Float(5));
|
||||
productFeatures.setUsl(new Float(10));
|
||||
@@ -55,7 +57,7 @@ public class ProcessInspectionController {
|
||||
|
||||
|
||||
QueryDataParam queryDataParam = new QueryDataParam();
|
||||
queryDataParam.setMeasurement("Weight");
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range(DataUtils.getBeforeDate(10).toInstant(), Instant.now()));
|
||||
meanStandardDeviationGraph.initialDate(queryDataParam);
|
||||
|
||||
@@ -89,7 +91,7 @@ public class ProcessInspectionController {
|
||||
|
||||
|
||||
QueryDataParam queryDataParam = new QueryDataParam();
|
||||
queryDataParam.setMeasurement("Weight");
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range(DataUtils.getBeforeDate(10).toInstant(), Instant.now()));
|
||||
meanRGraph.initialDate(queryDataParam);
|
||||
|
||||
@@ -122,7 +124,7 @@ public class ProcessInspectionController {
|
||||
|
||||
|
||||
QueryDataParam queryDataParam = new QueryDataParam();
|
||||
queryDataParam.setMeasurement("Weight");
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range(DataUtils.getBeforeDate(10).toInstant(), Instant.now()));
|
||||
xmrGraph.initialDate(queryDataParam);
|
||||
|
||||
@@ -137,6 +139,109 @@ public class ProcessInspectionController {
|
||||
|
||||
return R.ok("成功",xmrGraphData);
|
||||
}
|
||||
@PostMapping("/NPGraphTest")
|
||||
public R<NPGraphData> NPGraphTest() throws Exception {
|
||||
ProductFeatures productFeatures = new ProductFeatures();
|
||||
productFeatures.setSl(new Float(5));
|
||||
productFeatures.setUsl(new Float(10));
|
||||
productFeatures.setLsl(new Float(1));
|
||||
|
||||
productFeatures.setName("LostDays");
|
||||
NPGraph npGraph = new NPGraph(productFeatures);
|
||||
|
||||
|
||||
QueryDataGroupByTimeParam queryDataParam = new QueryDataGroupByTimeParam();
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range( Instant.now() , DataUtils.getAfterDate(999).toInstant() ));
|
||||
queryDataParam.setTimeType(1);
|
||||
npGraph.initialDate(queryDataParam);
|
||||
|
||||
NPGraphData npGraph1 = new NPGraphData(
|
||||
npGraph.getList(),
|
||||
npGraph.getSpecificationLimit(),
|
||||
npGraph.getArgName()
|
||||
);
|
||||
|
||||
return R.ok("成功",npGraph1);
|
||||
}
|
||||
@PostMapping("/PGraphTest")
|
||||
public R<PGraphData> PGraphTest() throws Exception {
|
||||
ProductFeatures productFeatures = new ProductFeatures();
|
||||
productFeatures.setSl(new Float(5));
|
||||
productFeatures.setUsl(new Float(10));
|
||||
productFeatures.setLsl(new Float(1));
|
||||
|
||||
productFeatures.setName("LostDays");
|
||||
PGraph pGraph = new PGraph(productFeatures);
|
||||
|
||||
|
||||
QueryDataGroupByTimeParam queryDataParam = new QueryDataGroupByTimeParam();
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range( Instant.now() , DataUtils.getAfterDate(999).toInstant() ));
|
||||
queryDataParam.setTimeType(2);
|
||||
pGraph.initialDate(queryDataParam);
|
||||
|
||||
PGraphData npGraph1 = new PGraphData(
|
||||
pGraph.getList(),
|
||||
pGraph.getSpecificationLimit(),
|
||||
pGraph.getArgName()
|
||||
);
|
||||
|
||||
return R.ok("成功",npGraph1);
|
||||
}
|
||||
@PostMapping("/CGraphTest")
|
||||
public R<CGraphData> CGraphTest() throws Exception {
|
||||
ProductFeatures productFeatures = new ProductFeatures();
|
||||
productFeatures.setSl(new Float(5));
|
||||
productFeatures.setUsl(new Float(10));
|
||||
productFeatures.setLsl(new Float(1));
|
||||
|
||||
productFeatures.setName("LostDays");
|
||||
CGraph cGraph = new CGraph(productFeatures);
|
||||
|
||||
|
||||
QueryDataGroupByTimeParam queryDataParam = new QueryDataGroupByTimeParam();
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range( Instant.now() , DataUtils.getAfterDate(999).toInstant() ));
|
||||
queryDataParam.setTimeType(2);
|
||||
cGraph.initialDate(queryDataParam);
|
||||
|
||||
CGraphData npGraph1 = new CGraphData(
|
||||
cGraph.getList(),
|
||||
cGraph.getSpecificationLimit(),
|
||||
cGraph.getArgName()
|
||||
);
|
||||
|
||||
return R.ok("成功",npGraph1);
|
||||
}
|
||||
|
||||
@PostMapping("/UGraphTest")
|
||||
public R<UGraphData> UGraphTest() throws Exception {
|
||||
ProductFeatures productFeatures = new ProductFeatures();
|
||||
productFeatures.setSl(new Float(5));
|
||||
productFeatures.setUsl(new Float(10));
|
||||
productFeatures.setLsl(new Float(1));
|
||||
|
||||
productFeatures.setName("LostDays");
|
||||
UGraph uGraph = new UGraph(productFeatures);
|
||||
|
||||
|
||||
QueryDataGroupByTimeParam queryDataParam = new QueryDataGroupByTimeParam();
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range( Instant.now() , DataUtils.getAfterDate(999).toInstant() ));
|
||||
queryDataParam.setTimeType(2);
|
||||
uGraph.initialDate(queryDataParam);
|
||||
|
||||
UGraphData npGraph1 = new UGraphData(
|
||||
uGraph.getList(),
|
||||
uGraph.getSpecificationLimit(),
|
||||
uGraph.getArgName()
|
||||
);
|
||||
|
||||
return R.ok("成功",npGraph1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
private ProductFeatures setRealSampleSize(GraphArg graphArg){
|
||||
ProductFeaturesDTO productFeaturesDTO = productFeaturesService.get(graphArg.getProductFeaturesId());
|
||||
@@ -235,4 +340,87 @@ public class ProcessInspectionController {
|
||||
return R.ok("成功",xmrGraphData);
|
||||
}
|
||||
|
||||
@PostMapping("/NPGraph")
|
||||
public R<NPGraphData> NPGraph(@RequestBody GraphArg graphArg) throws Exception {
|
||||
|
||||
ProductFeatures productFeatures = setRealSampleSize(graphArg);
|
||||
|
||||
NPGraph npGraph = new NPGraph(productFeatures);
|
||||
|
||||
QueryDataGroupByTimeParam queryDataParam = new QueryDataGroupByTimeParam();
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range( graphArg.getBegin().toInstant() , graphArg.getEnd().toInstant() ));
|
||||
queryDataParam.setTimeType(graphArg.getGroupType());
|
||||
npGraph.initialDate(queryDataParam);
|
||||
|
||||
NPGraphData npGraph1 = new NPGraphData(
|
||||
npGraph.getList(),
|
||||
npGraph.getSpecificationLimit(),
|
||||
npGraph.getArgName()
|
||||
);
|
||||
return R.ok("成功",npGraph1);
|
||||
}
|
||||
|
||||
@PostMapping("/PGraph")
|
||||
public R<PGraphData> PGraph(@RequestBody GraphArg graphArg) throws Exception {
|
||||
|
||||
ProductFeatures productFeatures = setRealSampleSize(graphArg);
|
||||
|
||||
PGraph pGraph = new PGraph(productFeatures);
|
||||
|
||||
QueryDataGroupByTimeParam queryDataParam = new QueryDataGroupByTimeParam();
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range( graphArg.getBegin().toInstant() , graphArg.getEnd().toInstant() ));
|
||||
queryDataParam.setTimeType(graphArg.getGroupType());
|
||||
pGraph.initialDate(queryDataParam);
|
||||
|
||||
PGraphData npGraph1 = new PGraphData(
|
||||
pGraph.getList(),
|
||||
pGraph.getSpecificationLimit(),
|
||||
pGraph.getArgName()
|
||||
);
|
||||
return R.ok("成功",npGraph1);
|
||||
}
|
||||
@PostMapping("/CGraph")
|
||||
public R<CGraphData> CGraph(@RequestBody GraphArg graphArg) throws Exception {
|
||||
|
||||
ProductFeatures productFeatures = setRealSampleSize(graphArg);
|
||||
|
||||
CGraph cGraph = new CGraph(productFeatures);
|
||||
|
||||
QueryDataGroupByTimeParam queryDataParam = new QueryDataGroupByTimeParam();
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range( graphArg.getBegin().toInstant() , graphArg.getEnd().toInstant() ));
|
||||
queryDataParam.setTimeType(graphArg.getGroupType());
|
||||
cGraph.initialDate(queryDataParam);
|
||||
|
||||
CGraphData npGraph1 = new CGraphData(
|
||||
cGraph.getList(),
|
||||
cGraph.getSpecificationLimit(),
|
||||
cGraph.getArgName()
|
||||
);
|
||||
return R.ok("成功",npGraph1);
|
||||
}
|
||||
|
||||
@PostMapping("/UGraph")
|
||||
public R<UGraphData> UGraph(@RequestBody GraphArg graphArg) throws Exception {
|
||||
|
||||
ProductFeatures productFeatures = setRealSampleSize(graphArg);
|
||||
|
||||
UGraph uGraph = new UGraph(productFeatures);
|
||||
|
||||
QueryDataGroupByTimeParam queryDataParam = new QueryDataGroupByTimeParam();
|
||||
queryDataParam.setMeasurement(Constant.measurement);
|
||||
queryDataParam.setRange(new Range( graphArg.getBegin().toInstant() , graphArg.getEnd().toInstant() ));
|
||||
queryDataParam.setTimeType(graphArg.getGroupType());
|
||||
uGraph.initialDate(queryDataParam);
|
||||
|
||||
UGraphData uGraphData = new UGraphData(
|
||||
uGraph.getList(),
|
||||
uGraph.getSpecificationLimit(),
|
||||
uGraph.getArgName()
|
||||
);
|
||||
return R.ok("成功",uGraphData);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -0,0 +1,32 @@
|
||||
package com.cnbm.processInspection.dto;
|
||||
|
||||
import com.cnbm.qualityPlanning.entity.CPoint;
|
||||
import com.cnbm.qualityPlanning.entity.PPoint;
|
||||
import com.cnbm.qualityPlanning.entity.SpecificationLimit;
|
||||
import io.swagger.annotations.ApiModel;
|
||||
import io.swagger.annotations.ApiModelProperty;
|
||||
import lombok.Data;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @Desc: ""
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/22 14:18
|
||||
*/
|
||||
@Data
|
||||
@ApiModel(value = "C控制图 结果类")
|
||||
public class CGraphData {
|
||||
@ApiModelProperty(value = "P控制图list数据")
|
||||
private List<CPoint> list;
|
||||
@ApiModelProperty(value = "P控制图 规格线")
|
||||
private SpecificationLimit specificationLimit;
|
||||
@ApiModelProperty(value = "P控制图 参数名")
|
||||
private String argName;
|
||||
|
||||
public CGraphData(List<CPoint> list, SpecificationLimit specificationLimit, String argName) {
|
||||
this.list = list;
|
||||
this.specificationLimit = specificationLimit;
|
||||
this.argName = argName;
|
||||
}
|
||||
}
|
||||
@@ -32,5 +32,6 @@ public class GraphArg {
|
||||
@ApiModelProperty(value = "样本大小,不填的话用之前配置的")
|
||||
private Integer sampleSize;
|
||||
|
||||
|
||||
@ApiModelProperty(value = "分组类别(1=年 , 2=月 , 3=日)(用于计数型控制图)")
|
||||
private Integer groupType;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,22 @@
|
||||
package com.cnbm.processInspection.dto;
|
||||
|
||||
import lombok.Data;
|
||||
|
||||
/**
|
||||
* @Desc: ""
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/27 15:56
|
||||
*/
|
||||
@Data
|
||||
public class InterpretationListArgForCount {
|
||||
private Integer number;
|
||||
private Integer arg;
|
||||
|
||||
public InterpretationListArgForCount() {
|
||||
}
|
||||
|
||||
public InterpretationListArgForCount(Integer number, Integer arg) {
|
||||
this.number = number;
|
||||
this.arg = arg;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,35 @@
|
||||
package com.cnbm.processInspection.dto;
|
||||
|
||||
import com.cnbm.common.spc.math.StandardDiviation;
|
||||
import com.cnbm.processInspection.graphAnalyzed.forMeterage.xmr.XMRGraphEntity;
|
||||
import com.cnbm.qualityPlanning.entity.ControlLimit;
|
||||
import com.cnbm.qualityPlanning.entity.NPPoint;
|
||||
import com.cnbm.qualityPlanning.entity.ProcessCapability;
|
||||
import com.cnbm.qualityPlanning.entity.SpecificationLimit;
|
||||
import io.swagger.annotations.ApiModel;
|
||||
import io.swagger.annotations.ApiModelProperty;
|
||||
import lombok.Data;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @Desc: ""
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/22 14:18
|
||||
*/
|
||||
@Data
|
||||
@ApiModel(value = "NP控制图 结果类")
|
||||
public class NPGraphData {
|
||||
@ApiModelProperty(value = "NP控制图list数据")
|
||||
private List<NPPoint> list;
|
||||
@ApiModelProperty(value = "NP控制图 规格线")
|
||||
private SpecificationLimit specificationLimit;
|
||||
@ApiModelProperty(value = "NP控制图 参数名")
|
||||
private String argName;
|
||||
|
||||
public NPGraphData(List<NPPoint> list, SpecificationLimit specificationLimit, String argName) {
|
||||
this.list = list;
|
||||
this.specificationLimit = specificationLimit;
|
||||
this.argName = argName;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,32 @@
|
||||
package com.cnbm.processInspection.dto;
|
||||
|
||||
import com.cnbm.qualityPlanning.entity.NPPoint;
|
||||
import com.cnbm.qualityPlanning.entity.PPoint;
|
||||
import com.cnbm.qualityPlanning.entity.SpecificationLimit;
|
||||
import io.swagger.annotations.ApiModel;
|
||||
import io.swagger.annotations.ApiModelProperty;
|
||||
import lombok.Data;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @Desc: ""
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/22 14:18
|
||||
*/
|
||||
@Data
|
||||
@ApiModel(value = "P控制图 结果类")
|
||||
public class PGraphData {
|
||||
@ApiModelProperty(value = "P控制图list数据")
|
||||
private List<PPoint> list;
|
||||
@ApiModelProperty(value = "P控制图 规格线")
|
||||
private SpecificationLimit specificationLimit;
|
||||
@ApiModelProperty(value = "P控制图 参数名")
|
||||
private String argName;
|
||||
|
||||
public PGraphData(List<PPoint> list, SpecificationLimit specificationLimit, String argName) {
|
||||
this.list = list;
|
||||
this.specificationLimit = specificationLimit;
|
||||
this.argName = argName;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,32 @@
|
||||
package com.cnbm.processInspection.dto;
|
||||
|
||||
import com.cnbm.qualityPlanning.entity.CPoint;
|
||||
import com.cnbm.qualityPlanning.entity.SpecificationLimit;
|
||||
import com.cnbm.qualityPlanning.entity.UPoint;
|
||||
import io.swagger.annotations.ApiModel;
|
||||
import io.swagger.annotations.ApiModelProperty;
|
||||
import lombok.Data;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @Desc: ""
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/22 14:18
|
||||
*/
|
||||
@Data
|
||||
@ApiModel(value = "U控制图 结果类")
|
||||
public class UGraphData {
|
||||
@ApiModelProperty(value = "U控制图list数据")
|
||||
private List<UPoint> list;
|
||||
@ApiModelProperty(value = "U控制图 规格线")
|
||||
private SpecificationLimit specificationLimit;
|
||||
@ApiModelProperty(value = "U控制图 参数名")
|
||||
private String argName;
|
||||
|
||||
public UGraphData(List<UPoint> list, SpecificationLimit specificationLimit, String argName) {
|
||||
this.list = list;
|
||||
this.specificationLimit = specificationLimit;
|
||||
this.argName = argName;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,153 @@
|
||||
package com.cnbm.processInspection.graphAnalyzed.forCount.c;
|
||||
|
||||
import com.cnbm.basic.entity.ProductFeatures;
|
||||
import com.cnbm.common.spc.util.DataUtils;
|
||||
import com.cnbm.influx.config.InfluxClient;
|
||||
import com.cnbm.influx.constant.Constant;
|
||||
import com.cnbm.influx.param.QueryDataGroupByTimeParam;
|
||||
import com.cnbm.influx.param.Tag;
|
||||
import com.cnbm.qualityPlanning.entity.CPoint;
|
||||
import com.cnbm.qualityPlanning.entity.ControlLimit;
|
||||
import com.cnbm.qualityPlanning.entity.PPoint;
|
||||
import com.cnbm.qualityPlanning.entity.SpecificationLimit;
|
||||
import com.influxdb.query.FluxRecord;
|
||||
import com.influxdb.query.FluxTable;
|
||||
import lombok.Data;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @Desc: "均值标准差 控制图 , 计算类"
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/20 14:26
|
||||
* 使用方式:① 先new MeanStandardDeviationGraph 对象 ;② 再initialData 初始化数据;③ 再get 控制限
|
||||
*
|
||||
* 步骤:
|
||||
* ① 先读mysql表,查询 product_features 表,先读到 sample_size(样本量)
|
||||
* ② 再依据 influx.argName == mysql.product_feature.name && 时间段 查询所有的 参数数据
|
||||
* ③ 拿到参数数据后,分组 整合成List<Point>,
|
||||
* 计算控制限
|
||||
* 计算 母体 的 \sigma 、 bar{x} 。。。
|
||||
* 计算CPK 、CPU 、CPL这些
|
||||
* ④ 如果配置了判读方案,还要 调用 StatisticalControlledTest Function 检验。
|
||||
* ⑤
|
||||
*/
|
||||
@Data
|
||||
public class CGraph {
|
||||
|
||||
|
||||
//计数型,不能用判读方案校验,,因为 当每个样本n不同,控制限 都不一定相同。
|
||||
// private List<InterpretationListArgForCount> interpretationScheme;
|
||||
private String argName;
|
||||
|
||||
private List<CPoint> list;
|
||||
|
||||
private Double cbar;
|
||||
|
||||
private SpecificationLimit specificationLimit;
|
||||
|
||||
public CGraph(ProductFeatures productFeatures) throws Exception {
|
||||
this.argName = productFeatures.getName();
|
||||
list = new ArrayList<>();
|
||||
this.specificationLimit = new SpecificationLimit(
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl(),
|
||||
productFeatures.getSl()==null?null:productFeatures.getSl(),
|
||||
productFeatures.getLsl()==null?null:productFeatures.getLsl()
|
||||
);
|
||||
}
|
||||
|
||||
private Double[] toDoubleArray(Object[] o){
|
||||
Double[] res= new Double[o.length];
|
||||
for(int i=0;i<o.length;i++){
|
||||
res[i] = (Double) o[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
private Double computeCbar(List<FluxTable> query){
|
||||
Double totalFailNum = (double)0;
|
||||
|
||||
for (FluxTable fluxTable : query) {
|
||||
List<FluxRecord> records = fluxTable.getRecords();
|
||||
Integer failNum = 0;
|
||||
for (FluxRecord fluxRecord : records) {
|
||||
//因为 传进去的就是Double 类型,所以取出来,自然而然就是Double
|
||||
Double value = Double.parseDouble(fluxRecord.getValueByKey("_value").toString());
|
||||
if(value.equals((double) 0)){
|
||||
failNum+=1;
|
||||
}
|
||||
}
|
||||
totalFailNum =totalFailNum + (double)failNum;
|
||||
}
|
||||
return totalFailNum/query.size();
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
//2022-08-04 T06:59:55.628Z
|
||||
String name = "2022-08-04 T06:59:55.628Z";
|
||||
String[] s = name.split(" ");
|
||||
String[] split = s[0].split("-");
|
||||
System.out.println(name);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* name : 初始化数据函数
|
||||
* desc : 从influxdb 里面读取数据,然后 加工处理成 我需要的
|
||||
* 步骤:
|
||||
* ①
|
||||
* */
|
||||
public void initialDate(QueryDataGroupByTimeParam queryDataParam){
|
||||
queryDataParam.setBucket(Constant.bucket);
|
||||
List<String> dropNames = new ArrayList<>();
|
||||
dropNames.add("transationId");
|
||||
dropNames.add("inspectionSheetId");
|
||||
dropNames.add("batchNum");
|
||||
queryDataParam.setDropedTagNames(dropNames);
|
||||
queryDataParam.setTag(new Tag("argName",argName));
|
||||
|
||||
List<FluxTable> query = InfluxClient.Client.queryGroupByTime(queryDataParam);
|
||||
//1. 先从fluxdb 里面提取原始数据
|
||||
//计算p bar
|
||||
this.cbar = computeCbar(query);
|
||||
//2.计算各项式
|
||||
for(int i=0 ;i<query.size();i++){
|
||||
List<FluxRecord> records = query.get(i).getRecords();
|
||||
Integer failNum = 0;
|
||||
String name = DataUtils.splitToNeed(records.get(0).getTime().toString(),queryDataParam.getTimeType());
|
||||
for (FluxRecord fluxRecord : records) {
|
||||
//因为 传进去的就是Double 类型,所以取出来,自然而然就是Double
|
||||
Double value = Double.parseDouble(fluxRecord.getValueByKey("_value").toString());
|
||||
if(value.equals((double) 0)){
|
||||
failNum+=1;
|
||||
}
|
||||
}
|
||||
list.add(new CPoint(
|
||||
getCL(),
|
||||
i,
|
||||
(double)failNum,
|
||||
name
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* desc: get Xbar控制图 的控制限
|
||||
* 注意:此函数 要在 initialDate()函数执行之后
|
||||
* */
|
||||
public ControlLimit getCL(){
|
||||
|
||||
Double mul = 3 * Math.sqrt( this.cbar );
|
||||
Double lcl = (this.cbar-mul)<0?0:(this.cbar-mul);
|
||||
return new ControlLimit(
|
||||
this.cbar + mul,
|
||||
this.cbar,
|
||||
lcl
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,156 @@
|
||||
package com.cnbm.processInspection.graphAnalyzed.forCount.np;
|
||||
|
||||
import com.cnbm.basic.entity.ProductFeatures;
|
||||
import com.cnbm.common.spc.math.StandardDiviation;
|
||||
import com.cnbm.common.spc.util.DataUtils;
|
||||
import com.cnbm.influx.config.InfluxClient;
|
||||
import com.cnbm.influx.constant.Constant;
|
||||
import com.cnbm.influx.param.QueryDataGroupByTimeParam;
|
||||
import com.cnbm.influx.param.QueryDataParam;
|
||||
import com.cnbm.influx.param.Tag;
|
||||
import com.cnbm.processInspection.controlCoefficientConstant.XBarRCoefficients;
|
||||
import com.cnbm.processInspection.dto.InterpretationListArg;
|
||||
import com.cnbm.processInspection.dto.InterpretationListArgForCount;
|
||||
import com.cnbm.qualityPlanning.common.StatisticalControlledTest;
|
||||
import com.cnbm.qualityPlanning.entity.*;
|
||||
import com.influxdb.query.FluxRecord;
|
||||
import com.influxdb.query.FluxTable;
|
||||
import lombok.Data;
|
||||
import org.omg.CORBA.PRIVATE_MEMBER;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @Desc: "均值标准差 控制图 , 计算类"
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/20 14:26
|
||||
* 使用方式:① 先new MeanStandardDeviationGraph 对象 ;② 再initialData 初始化数据;③ 再get 控制限
|
||||
*
|
||||
* 步骤:
|
||||
* ① 先读mysql表,查询 product_features 表,先读到 sample_size(样本量)
|
||||
* ② 再依据 influx.argName == mysql.product_feature.name && 时间段 查询所有的 参数数据
|
||||
* ③ 拿到参数数据后,分组 整合成List<Point>,
|
||||
* 计算控制限
|
||||
* 计算 母体 的 \sigma 、 bar{x} 。。。
|
||||
* 计算CPK 、CPU 、CPL这些
|
||||
* ④ 如果配置了判读方案,还要 调用 StatisticalControlledTest Function 检验。
|
||||
* ⑤
|
||||
*/
|
||||
@Data
|
||||
public class NPGraph {
|
||||
|
||||
|
||||
//计数型,不能用判读方案校验,,因为 当每个样本n不同,控制限 都不一定相同。
|
||||
// private List<InterpretationListArgForCount> interpretationScheme;
|
||||
private String argName;
|
||||
|
||||
private List<NPPoint> list;
|
||||
|
||||
private Double pbar;
|
||||
|
||||
private SpecificationLimit specificationLimit;
|
||||
|
||||
public NPGraph(ProductFeatures productFeatures) throws Exception {
|
||||
this.argName = productFeatures.getName();
|
||||
list = new ArrayList<>();
|
||||
this.specificationLimit = new SpecificationLimit(
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl(),
|
||||
productFeatures.getSl()==null?null:productFeatures.getSl(),
|
||||
productFeatures.getLsl()==null?null:productFeatures.getLsl()
|
||||
);
|
||||
}
|
||||
|
||||
private Double[] toDoubleArray(Object[] o){
|
||||
Double[] res= new Double[o.length];
|
||||
for(int i=0;i<o.length;i++){
|
||||
res[i] = (Double) o[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
private Double computePbar(List<FluxTable> query){
|
||||
Double totalFailNum = (double)0;
|
||||
Double totalN = (double)0;
|
||||
|
||||
for (FluxTable fluxTable : query) {
|
||||
List<FluxRecord> records = fluxTable.getRecords();
|
||||
|
||||
Integer failNum = 0;
|
||||
Integer n = records.size();
|
||||
for (FluxRecord fluxRecord : records) {
|
||||
//因为 传进去的就是Double 类型,所以取出来,自然而然就是Double
|
||||
Double value = Double.parseDouble(fluxRecord.getValueByKey("_value").toString());
|
||||
if(value.equals((double) 0)){
|
||||
failNum+=1;
|
||||
}
|
||||
}
|
||||
totalFailNum =totalFailNum + (double)failNum;
|
||||
totalN = totalN + (double)n;
|
||||
}
|
||||
|
||||
return totalFailNum/totalN;
|
||||
}
|
||||
|
||||
/**
|
||||
* name : 初始化数据函数
|
||||
* desc : 从influxdb 里面读取数据,然后 加工处理成 我需要的
|
||||
* 步骤:
|
||||
* ①
|
||||
* */
|
||||
public void initialDate(QueryDataGroupByTimeParam queryDataParam){
|
||||
queryDataParam.setBucket(Constant.bucket);
|
||||
List<String> dropNames = new ArrayList<>();
|
||||
dropNames.add("transationId");
|
||||
dropNames.add("inspectionSheetId");
|
||||
dropNames.add("batchNum");
|
||||
queryDataParam.setDropedTagNames(dropNames);
|
||||
queryDataParam.setTag(new Tag("argName",argName));
|
||||
|
||||
List<FluxTable> query = InfluxClient.Client.queryGroupByTime(queryDataParam);
|
||||
//1. 先从fluxdb 里面提取原始数据
|
||||
List<Double> originData = new ArrayList<>();
|
||||
//计算p bar
|
||||
this.pbar = computePbar(query);
|
||||
|
||||
//2.计算各项式
|
||||
for(int i=0 ;i<query.size();i++){
|
||||
List<FluxRecord> records = query.get(i).getRecords();
|
||||
Integer failNum = 0;
|
||||
Integer n = records.size();
|
||||
String name = DataUtils.splitToNeed(records.get(0).getTime().toString(),queryDataParam.getTimeType());
|
||||
for (FluxRecord fluxRecord : records) {
|
||||
//因为 传进去的就是Double 类型,所以取出来,自然而然就是Double
|
||||
Double value = Double.parseDouble(fluxRecord.getValueByKey("_value").toString());
|
||||
if(value.equals((double) 0)){
|
||||
failNum+=1;
|
||||
}
|
||||
}
|
||||
|
||||
list.add(new NPPoint(
|
||||
getCL((double)n),
|
||||
i,
|
||||
failNum,
|
||||
name
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* desc: get Xbar控制图 的控制限
|
||||
* 注意:此函数 要在 initialDate()函数执行之后
|
||||
* */
|
||||
public ControlLimit getCL(Double n){
|
||||
Double npbar = n * this.pbar;
|
||||
Double mul = 3 * Math.sqrt(npbar*(1-this.pbar));
|
||||
Double lcl = (npbar-mul)<0?0:(npbar-mul);
|
||||
return new ControlLimit(
|
||||
npbar + mul,
|
||||
npbar,
|
||||
lcl
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,163 @@
|
||||
package com.cnbm.processInspection.graphAnalyzed.forCount.p;
|
||||
|
||||
import com.cnbm.basic.entity.ProductFeatures;
|
||||
import com.cnbm.common.spc.util.DataUtils;
|
||||
import com.cnbm.influx.config.InfluxClient;
|
||||
import com.cnbm.influx.constant.Constant;
|
||||
import com.cnbm.influx.param.QueryDataGroupByTimeParam;
|
||||
import com.cnbm.influx.param.Tag;
|
||||
import com.cnbm.qualityPlanning.entity.ControlLimit;
|
||||
import com.cnbm.qualityPlanning.entity.NPPoint;
|
||||
import com.cnbm.qualityPlanning.entity.PPoint;
|
||||
import com.cnbm.qualityPlanning.entity.SpecificationLimit;
|
||||
import com.influxdb.query.FluxRecord;
|
||||
import com.influxdb.query.FluxTable;
|
||||
import lombok.Data;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Date;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @Desc: "均值标准差 控制图 , 计算类"
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/20 14:26
|
||||
* 使用方式:① 先new MeanStandardDeviationGraph 对象 ;② 再initialData 初始化数据;③ 再get 控制限
|
||||
*
|
||||
* 步骤:
|
||||
* ① 先读mysql表,查询 product_features 表,先读到 sample_size(样本量)
|
||||
* ② 再依据 influx.argName == mysql.product_feature.name && 时间段 查询所有的 参数数据
|
||||
* ③ 拿到参数数据后,分组 整合成List<Point>,
|
||||
* 计算控制限
|
||||
* 计算 母体 的 \sigma 、 bar{x} 。。。
|
||||
* 计算CPK 、CPU 、CPL这些
|
||||
* ④ 如果配置了判读方案,还要 调用 StatisticalControlledTest Function 检验。
|
||||
* ⑤
|
||||
*/
|
||||
@Data
|
||||
public class PGraph {
|
||||
|
||||
|
||||
//计数型,不能用判读方案校验,,因为 当每个样本n不同,控制限 都不一定相同。
|
||||
// private List<InterpretationListArgForCount> interpretationScheme;
|
||||
private String argName;
|
||||
|
||||
private List<PPoint> list;
|
||||
|
||||
private Double pbar;
|
||||
|
||||
private SpecificationLimit specificationLimit;
|
||||
|
||||
public PGraph(ProductFeatures productFeatures) throws Exception {
|
||||
this.argName = productFeatures.getName();
|
||||
list = new ArrayList<>();
|
||||
this.specificationLimit = new SpecificationLimit(
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl(),
|
||||
productFeatures.getSl()==null?null:productFeatures.getSl(),
|
||||
productFeatures.getLsl()==null?null:productFeatures.getLsl()
|
||||
);
|
||||
}
|
||||
|
||||
private Double[] toDoubleArray(Object[] o){
|
||||
Double[] res= new Double[o.length];
|
||||
for(int i=0;i<o.length;i++){
|
||||
res[i] = (Double) o[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
private Double computePbar(List<FluxTable> query){
|
||||
Double totalFailNum = (double)0;
|
||||
Double totalN = (double)0;
|
||||
|
||||
for (FluxTable fluxTable : query) {
|
||||
List<FluxRecord> records = fluxTable.getRecords();
|
||||
|
||||
Integer failNum = 0;
|
||||
Integer n = records.size();
|
||||
for (FluxRecord fluxRecord : records) {
|
||||
//因为 传进去的就是Double 类型,所以取出来,自然而然就是Double
|
||||
Double value = Double.parseDouble(fluxRecord.getValueByKey("_value").toString());
|
||||
if(value.equals((double) 0)){
|
||||
failNum+=1;
|
||||
}
|
||||
}
|
||||
totalFailNum =totalFailNum + (double)failNum;
|
||||
totalN = totalN + (double)n;
|
||||
}
|
||||
|
||||
return totalFailNum/totalN;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
//2022-08-04 T06:59:55.628Z
|
||||
String name = "2022-08-04 T06:59:55.628Z";
|
||||
String[] s = name.split(" ");
|
||||
String[] split = s[0].split("-");
|
||||
System.out.println(name);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* name : 初始化数据函数
|
||||
* desc : 从influxdb 里面读取数据,然后 加工处理成 我需要的
|
||||
* 步骤:
|
||||
* ①
|
||||
* */
|
||||
public void initialDate(QueryDataGroupByTimeParam queryDataParam){
|
||||
queryDataParam.setBucket(Constant.bucket);
|
||||
List<String> dropNames = new ArrayList<>();
|
||||
dropNames.add("transationId");
|
||||
dropNames.add("inspectionSheetId");
|
||||
dropNames.add("batchNum");
|
||||
queryDataParam.setDropedTagNames(dropNames);
|
||||
queryDataParam.setTag(new Tag("argName",argName));
|
||||
|
||||
List<FluxTable> query = InfluxClient.Client.queryGroupByTime(queryDataParam);
|
||||
//1. 先从fluxdb 里面提取原始数据
|
||||
//计算p bar
|
||||
this.pbar = computePbar(query);
|
||||
|
||||
//2.计算各项式
|
||||
for(int i=0 ;i<query.size();i++){
|
||||
List<FluxRecord> records = query.get(i).getRecords();
|
||||
Integer failNum = 0;
|
||||
Integer n = records.size();
|
||||
String name = DataUtils.splitToNeed(records.get(0).getTime().toString(),queryDataParam.getTimeType());
|
||||
for (FluxRecord fluxRecord : records) {
|
||||
//因为 传进去的就是Double 类型,所以取出来,自然而然就是Double
|
||||
Double value = Double.parseDouble(fluxRecord.getValueByKey("_value").toString());
|
||||
if(value.equals((double) 0)){
|
||||
failNum+=1;
|
||||
}
|
||||
}
|
||||
Double pi = (double)failNum / (double)n;
|
||||
|
||||
list.add(new PPoint(
|
||||
getCL((double)n),
|
||||
i,
|
||||
pi,
|
||||
name
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* desc: get Xbar控制图 的控制限
|
||||
* 注意:此函数 要在 initialDate()函数执行之后
|
||||
* */
|
||||
public ControlLimit getCL(Double n){
|
||||
|
||||
Double mul = 3 * Math.sqrt( ( this.pbar * (1-this.pbar) ) / n );
|
||||
Double lcl = (this.pbar-mul)<0?0:(this.pbar-mul);
|
||||
return new ControlLimit(
|
||||
this.pbar + mul,
|
||||
this.pbar,
|
||||
lcl
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,161 @@
|
||||
package com.cnbm.processInspection.graphAnalyzed.forCount.u;
|
||||
|
||||
import com.cnbm.basic.entity.ProductFeatures;
|
||||
import com.cnbm.common.spc.util.DataUtils;
|
||||
import com.cnbm.influx.config.InfluxClient;
|
||||
import com.cnbm.influx.constant.Constant;
|
||||
import com.cnbm.influx.param.QueryDataGroupByTimeParam;
|
||||
import com.cnbm.influx.param.Tag;
|
||||
import com.cnbm.qualityPlanning.entity.ControlLimit;
|
||||
import com.cnbm.qualityPlanning.entity.PPoint;
|
||||
import com.cnbm.qualityPlanning.entity.SpecificationLimit;
|
||||
import com.cnbm.qualityPlanning.entity.UPoint;
|
||||
import com.influxdb.query.FluxRecord;
|
||||
import com.influxdb.query.FluxTable;
|
||||
import lombok.Data;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @Desc: "均值标准差 控制图 , 计算类"
|
||||
* @Author: caixiang
|
||||
* @DATE: 2022/7/20 14:26
|
||||
* 使用方式:① 先new MeanStandardDeviationGraph 对象 ;② 再initialData 初始化数据;③ 再get 控制限
|
||||
*
|
||||
* 步骤:
|
||||
* ① 先读mysql表,查询 product_features 表,先读到 sample_size(样本量)
|
||||
* ② 再依据 influx.argName == mysql.product_feature.name && 时间段 查询所有的 参数数据
|
||||
* ③ 拿到参数数据后,分组 整合成List<Point>,
|
||||
* 计算控制限
|
||||
* 计算 母体 的 \sigma 、 bar{x} 。。。
|
||||
* 计算CPK 、CPU 、CPL这些
|
||||
* ④ 如果配置了判读方案,还要 调用 StatisticalControlledTest Function 检验。
|
||||
* ⑤
|
||||
*/
|
||||
@Data
|
||||
public class UGraph {
|
||||
|
||||
|
||||
//计数型,不能用判读方案校验,,因为 当每个样本n不同,控制限 都不一定相同。
|
||||
// private List<InterpretationListArgForCount> interpretationScheme;
|
||||
private String argName;
|
||||
|
||||
private List<UPoint> list;
|
||||
|
||||
private Double ubar;
|
||||
|
||||
private SpecificationLimit specificationLimit;
|
||||
|
||||
public UGraph(ProductFeatures productFeatures) throws Exception {
|
||||
this.argName = productFeatures.getName();
|
||||
list = new ArrayList<>();
|
||||
this.specificationLimit = new SpecificationLimit(
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl(),
|
||||
productFeatures.getSl()==null?null:productFeatures.getSl(),
|
||||
productFeatures.getLsl()==null?null:productFeatures.getLsl()
|
||||
);
|
||||
}
|
||||
|
||||
private Double[] toDoubleArray(Object[] o){
|
||||
Double[] res= new Double[o.length];
|
||||
for(int i=0;i<o.length;i++){
|
||||
res[i] = (Double) o[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
private Double computeUbar(List<FluxTable> query){
|
||||
Double totalFailNum = (double)0;
|
||||
Double totalN = (double)0;
|
||||
|
||||
for (FluxTable fluxTable : query) {
|
||||
List<FluxRecord> records = fluxTable.getRecords();
|
||||
|
||||
Integer failNum = 0;
|
||||
Integer n = records.size();
|
||||
for (FluxRecord fluxRecord : records) {
|
||||
//因为 传进去的就是Double 类型,所以取出来,自然而然就是Double
|
||||
Double value = Double.parseDouble(fluxRecord.getValueByKey("_value").toString());
|
||||
if(value.equals((double) 0)){
|
||||
failNum+=1;
|
||||
}
|
||||
}
|
||||
totalFailNum =totalFailNum + (double)failNum;
|
||||
totalN = totalN + (double)n;
|
||||
}
|
||||
return totalFailNum/totalN;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
//2022-08-04 T06:59:55.628Z
|
||||
String name = "2022-08-04 T06:59:55.628Z";
|
||||
String[] s = name.split(" ");
|
||||
String[] split = s[0].split("-");
|
||||
System.out.println(name);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* name : 初始化数据函数
|
||||
* desc : 从influxdb 里面读取数据,然后 加工处理成 我需要的
|
||||
* 步骤:
|
||||
* ①
|
||||
* */
|
||||
public void initialDate(QueryDataGroupByTimeParam queryDataParam){
|
||||
queryDataParam.setBucket(Constant.bucket);
|
||||
List<String> dropNames = new ArrayList<>();
|
||||
dropNames.add("transationId");
|
||||
dropNames.add("inspectionSheetId");
|
||||
dropNames.add("batchNum");
|
||||
queryDataParam.setDropedTagNames(dropNames);
|
||||
queryDataParam.setTag(new Tag("argName",argName));
|
||||
|
||||
List<FluxTable> query = InfluxClient.Client.queryGroupByTime(queryDataParam);
|
||||
//1. 先从fluxdb 里面提取原始数据
|
||||
//计算p bar
|
||||
this.ubar = computeUbar(query);
|
||||
|
||||
//2.计算各项式
|
||||
for(int i=0 ;i<query.size();i++){
|
||||
List<FluxRecord> records = query.get(i).getRecords();
|
||||
Integer failNum = 0;
|
||||
Integer n = records.size();
|
||||
String name = DataUtils.splitToNeed(records.get(0).getTime().toString(),queryDataParam.getTimeType());
|
||||
for (FluxRecord fluxRecord : records) {
|
||||
//因为 传进去的就是Double 类型,所以取出来,自然而然就是Double
|
||||
Double value = Double.parseDouble(fluxRecord.getValueByKey("_value").toString());
|
||||
if(value.equals((double) 0)){
|
||||
failNum+=1;
|
||||
}
|
||||
}
|
||||
Double ui = (double)failNum / (double)n;
|
||||
|
||||
list.add(new UPoint(
|
||||
getCL((double)n),
|
||||
i,
|
||||
ui,
|
||||
name
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* desc: get Xbar控制图 的控制限
|
||||
* 注意:此函数 要在 initialDate()函数执行之后
|
||||
* */
|
||||
public ControlLimit getCL(Double n){
|
||||
|
||||
Double mul = 3 * Math.sqrt( this.ubar / n );
|
||||
Double lcl = (this.ubar-mul)<0?0:(this.ubar-mul);
|
||||
return new ControlLimit(
|
||||
this.ubar + mul,
|
||||
this.ubar,
|
||||
lcl
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -75,7 +75,7 @@ public class MeanRGraph {
|
||||
this.specificationLimit = new SpecificationLimit(
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl(),
|
||||
productFeatures.getSl()==null?null:productFeatures.getSl(),
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl()
|
||||
productFeatures.getLsl()==null?null:productFeatures.getLsl()
|
||||
);
|
||||
}
|
||||
|
||||
@@ -102,6 +102,7 @@ public class MeanRGraph {
|
||||
List<String> dropNames = new ArrayList<>();
|
||||
dropNames.add("transationId");
|
||||
dropNames.add("inspectionSheetId");
|
||||
dropNames.add("batchNum");
|
||||
queryDataParam.setDropedTagNames(dropNames);
|
||||
queryDataParam.setTag(new Tag("argName",argName));
|
||||
|
||||
|
||||
@@ -72,7 +72,7 @@ public class MeanStandardDeviationGraph {
|
||||
this.specificationLimit = new SpecificationLimit(
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl(),
|
||||
productFeatures.getSl()==null?null:productFeatures.getSl(),
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl()
|
||||
productFeatures.getLsl()==null?null:productFeatures.getLsl()
|
||||
);
|
||||
}
|
||||
|
||||
@@ -99,6 +99,7 @@ public class MeanStandardDeviationGraph {
|
||||
List<String> dropNames = new ArrayList<>();
|
||||
dropNames.add("transationId");
|
||||
dropNames.add("inspectionSheetId");
|
||||
dropNames.add("batchNum");
|
||||
queryDataParam.setDropedTagNames(dropNames);
|
||||
queryDataParam.setTag(new Tag("argName",argName));
|
||||
|
||||
|
||||
@@ -69,7 +69,7 @@ public class XMRGraph {
|
||||
this.specificationLimit = new SpecificationLimit(
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl(),
|
||||
productFeatures.getSl()==null?null:productFeatures.getSl(),
|
||||
productFeatures.getUsl()==null?null:productFeatures.getUsl()
|
||||
productFeatures.getLsl()==null?null:productFeatures.getLsl()
|
||||
);
|
||||
}
|
||||
|
||||
@@ -96,6 +96,7 @@ public class XMRGraph {
|
||||
List<String> dropNames = new ArrayList<>();
|
||||
dropNames.add("transationId");
|
||||
dropNames.add("inspectionSheetId");
|
||||
dropNames.add("batchNum");
|
||||
queryDataParam.setDropedTagNames(dropNames);
|
||||
queryDataParam.setTag(new Tag("argName",argName));
|
||||
|
||||
|
||||
Reference in New Issue
Block a user