添加项目文件。
This commit is contained in:
147
3rdparty/opencv/inc/opencv2/optflow/motempl.hpp
vendored
Normal file
147
3rdparty/opencv/inc/opencv2/optflow/motempl.hpp
vendored
Normal file
@@ -0,0 +1,147 @@
|
||||
/*
|
||||
By downloading, copying, installing or using the software you agree to this
|
||||
license. If you do not agree to this license, do not download, install,
|
||||
copy or use the software.
|
||||
|
||||
|
||||
License Agreement
|
||||
For Open Source Computer Vision Library
|
||||
(3-clause BSD License)
|
||||
|
||||
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
Third party copyrights are property of their respective owners.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice,
|
||||
this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the names of the copyright holders nor the names of the contributors
|
||||
may be used to endorse or promote products derived from this software
|
||||
without specific prior written permission.
|
||||
|
||||
This software is provided by the copyright holders and contributors "as is" and
|
||||
any express or implied warranties, including, but not limited to, the implied
|
||||
warranties of merchantability and fitness for a particular purpose are
|
||||
disclaimed. In no event shall copyright holders or contributors be liable for
|
||||
any direct, indirect, incidental, special, exemplary, or consequential damages
|
||||
(including, but not limited to, procurement of substitute goods or services;
|
||||
loss of use, data, or profits; or business interruption) however caused
|
||||
and on any theory of liability, whether in contract, strict liability,
|
||||
or tort (including negligence or otherwise) arising in any way out of
|
||||
the use of this software, even if advised of the possibility of such damage.
|
||||
*/
|
||||
|
||||
#ifndef __OPENCV_OPTFLOW_MOTEMPL_HPP__
|
||||
#define __OPENCV_OPTFLOW_MOTEMPL_HPP__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace motempl
|
||||
{
|
||||
|
||||
//! @addtogroup optflow
|
||||
//! @{
|
||||
|
||||
/** @brief Updates the motion history image by a moving silhouette.
|
||||
|
||||
@param silhouette Silhouette mask that has non-zero pixels where the motion occurs.
|
||||
@param mhi Motion history image that is updated by the function (single-channel, 32-bit
|
||||
floating-point).
|
||||
@param timestamp Current time in milliseconds or other units.
|
||||
@param duration Maximal duration of the motion track in the same units as timestamp .
|
||||
|
||||
The function updates the motion history image as follows:
|
||||
|
||||
\f[\texttt{mhi} (x,y)= \forkthree{\texttt{timestamp}}{if \(\texttt{silhouette}(x,y) \ne 0\)}{0}{if \(\texttt{silhouette}(x,y) = 0\) and \(\texttt{mhi} < (\texttt{timestamp} - \texttt{duration})\)}{\texttt{mhi}(x,y)}{otherwise}\f]
|
||||
|
||||
That is, MHI pixels where the motion occurs are set to the current timestamp , while the pixels
|
||||
where the motion happened last time a long time ago are cleared.
|
||||
|
||||
The function, together with calcMotionGradient and calcGlobalOrientation , implements a motion
|
||||
templates technique described in @cite Davis97 and @cite Bradski00 .
|
||||
*/
|
||||
CV_EXPORTS_W void updateMotionHistory( InputArray silhouette, InputOutputArray mhi,
|
||||
double timestamp, double duration );
|
||||
|
||||
/** @brief Calculates a gradient orientation of a motion history image.
|
||||
|
||||
@param mhi Motion history single-channel floating-point image.
|
||||
@param mask Output mask image that has the type CV_8UC1 and the same size as mhi . Its non-zero
|
||||
elements mark pixels where the motion gradient data is correct.
|
||||
@param orientation Output motion gradient orientation image that has the same type and the same
|
||||
size as mhi . Each pixel of the image is a motion orientation, from 0 to 360 degrees.
|
||||
@param delta1 Minimal (or maximal) allowed difference between mhi values within a pixel
|
||||
neighborhood.
|
||||
@param delta2 Maximal (or minimal) allowed difference between mhi values within a pixel
|
||||
neighborhood. That is, the function finds the minimum ( \f$m(x,y)\f$ ) and maximum ( \f$M(x,y)\f$ ) mhi
|
||||
values over \f$3 \times 3\f$ neighborhood of each pixel and marks the motion orientation at \f$(x, y)\f$
|
||||
as valid only if
|
||||
\f[\min ( \texttt{delta1} , \texttt{delta2} ) \le M(x,y)-m(x,y) \le \max ( \texttt{delta1} , \texttt{delta2} ).\f]
|
||||
@param apertureSize Aperture size of the Sobel operator.
|
||||
|
||||
The function calculates a gradient orientation at each pixel \f$(x, y)\f$ as:
|
||||
|
||||
\f[\texttt{orientation} (x,y)= \arctan{\frac{d\texttt{mhi}/dy}{d\texttt{mhi}/dx}}\f]
|
||||
|
||||
In fact, fastAtan2 and phase are used so that the computed angle is measured in degrees and covers
|
||||
the full range 0..360. Also, the mask is filled to indicate pixels where the computed angle is
|
||||
valid.
|
||||
|
||||
@note
|
||||
- (Python) An example on how to perform a motion template technique can be found at
|
||||
opencv_source_code/samples/python2/motempl.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcMotionGradient( InputArray mhi, OutputArray mask, OutputArray orientation,
|
||||
double delta1, double delta2, int apertureSize = 3 );
|
||||
|
||||
/** @brief Calculates a global motion orientation in a selected region.
|
||||
|
||||
@param orientation Motion gradient orientation image calculated by the function calcMotionGradient
|
||||
@param mask Mask image. It may be a conjunction of a valid gradient mask, also calculated by
|
||||
calcMotionGradient , and the mask of a region whose direction needs to be calculated.
|
||||
@param mhi Motion history image calculated by updateMotionHistory .
|
||||
@param timestamp Timestamp passed to updateMotionHistory .
|
||||
@param duration Maximum duration of a motion track in milliseconds, passed to updateMotionHistory
|
||||
|
||||
The function calculates an average motion direction in the selected region and returns the angle
|
||||
between 0 degrees and 360 degrees. The average direction is computed from the weighted orientation
|
||||
histogram, where a recent motion has a larger weight and the motion occurred in the past has a
|
||||
smaller weight, as recorded in mhi .
|
||||
*/
|
||||
CV_EXPORTS_W double calcGlobalOrientation( InputArray orientation, InputArray mask, InputArray mhi,
|
||||
double timestamp, double duration );
|
||||
|
||||
/** @brief Splits a motion history image into a few parts corresponding to separate independent motions (for
|
||||
example, left hand, right hand).
|
||||
|
||||
@param mhi Motion history image.
|
||||
@param segmask Image where the found mask should be stored, single-channel, 32-bit floating-point.
|
||||
@param boundingRects Vector containing ROIs of motion connected components.
|
||||
@param timestamp Current time in milliseconds or other units.
|
||||
@param segThresh Segmentation threshold that is recommended to be equal to the interval between
|
||||
motion history "steps" or greater.
|
||||
|
||||
The function finds all of the motion segments and marks them in segmask with individual values
|
||||
(1,2,...). It also computes a vector with ROIs of motion connected components. After that the motion
|
||||
direction for every component can be calculated with calcGlobalOrientation using the extracted mask
|
||||
of the particular component.
|
||||
*/
|
||||
CV_EXPORTS_W void segmentMotion( InputArray mhi, OutputArray segmask,
|
||||
CV_OUT std::vector<Rect>& boundingRects,
|
||||
double timestamp, double segThresh );
|
||||
|
||||
|
||||
//! @}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
149
3rdparty/opencv/inc/opencv2/optflow/pcaflow.hpp
vendored
Normal file
149
3rdparty/opencv/inc/opencv2/optflow/pcaflow.hpp
vendored
Normal file
@@ -0,0 +1,149 @@
|
||||
/*
|
||||
By downloading, copying, installing or using the software you agree to this
|
||||
license. If you do not agree to this license, do not download, install,
|
||||
copy or use the software.
|
||||
|
||||
|
||||
License Agreement
|
||||
For Open Source Computer Vision Library
|
||||
(3-clause BSD License)
|
||||
|
||||
Copyright (C) 2016, OpenCV Foundation, all rights reserved.
|
||||
Third party copyrights are property of their respective owners.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice,
|
||||
this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the names of the copyright holders nor the names of the contributors
|
||||
may be used to endorse or promote products derived from this software
|
||||
without specific prior written permission.
|
||||
|
||||
This software is provided by the copyright holders and contributors "as is" and
|
||||
any express or implied warranties, including, but not limited to, the implied
|
||||
warranties of merchantability and fitness for a particular purpose are
|
||||
disclaimed. In no event shall copyright holders or contributors be liable for
|
||||
any direct, indirect, incidental, special, exemplary, or consequential damages
|
||||
(including, but not limited to, procurement of substitute goods or services;
|
||||
loss of use, data, or profits; or business interruption) however caused
|
||||
and on any theory of liability, whether in contract, strict liability,
|
||||
or tort (including negligence or otherwise) arising in any way out of
|
||||
the use of this software, even if advised of the possibility of such damage.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file pcaflow.hpp
|
||||
* @author Vladislav Samsonov <vvladxx@gmail.com>
|
||||
* @brief Implementation of the PCAFlow algorithm from the following paper:
|
||||
* http://files.is.tue.mpg.de/black/papers/cvpr2015_pcaflow.pdf
|
||||
*
|
||||
* @cite Wulff:CVPR:2015
|
||||
*
|
||||
* There are some key differences which distinguish this algorithm from the original PCAFlow (see paper):
|
||||
* - Discrete Cosine Transform basis is used instead of basis extracted with PCA.
|
||||
* Reasoning: DCT basis has comparable performance and it doesn't require additional storage space.
|
||||
* Also, this decision helps to avoid overloading the algorithm with a lot of external input.
|
||||
* - Usage of built-in OpenCV feature tracking instead of libviso.
|
||||
*/
|
||||
|
||||
#ifndef __OPENCV_OPTFLOW_PCAFLOW_HPP__
|
||||
#define __OPENCV_OPTFLOW_PCAFLOW_HPP__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/video.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace optflow
|
||||
{
|
||||
|
||||
//! @addtogroup optflow
|
||||
//! @{
|
||||
|
||||
/** @brief
|
||||
* This class can be used for imposing a learned prior on the resulting optical flow.
|
||||
* Solution will be regularized according to this prior.
|
||||
* You need to generate appropriate prior file with "learn_prior.py" script beforehand.
|
||||
*/
|
||||
class CV_EXPORTS_W PCAPrior
|
||||
{
|
||||
private:
|
||||
Mat L1;
|
||||
Mat L2;
|
||||
Mat c1;
|
||||
Mat c2;
|
||||
|
||||
public:
|
||||
PCAPrior( const char *pathToPrior );
|
||||
|
||||
int getPadding() const { return L1.size().height; }
|
||||
|
||||
int getBasisSize() const { return L1.size().width; }
|
||||
|
||||
void fillConstraints( float *A1, float *A2, float *b1, float *b2 ) const;
|
||||
};
|
||||
|
||||
/** @brief PCAFlow algorithm.
|
||||
*/
|
||||
class CV_EXPORTS_W OpticalFlowPCAFlow : public DenseOpticalFlow
|
||||
{
|
||||
protected:
|
||||
const Ptr<const PCAPrior> prior;
|
||||
const Size basisSize;
|
||||
const float sparseRate; // (0 .. 0.1)
|
||||
const float retainedCornersFraction; // [0 .. 1]
|
||||
const float occlusionsThreshold;
|
||||
const float dampingFactor;
|
||||
const float claheClip;
|
||||
bool useOpenCL;
|
||||
|
||||
public:
|
||||
/** @brief Creates an instance of PCAFlow algorithm.
|
||||
* @param _prior Learned prior or no prior (default). @see cv::optflow::PCAPrior
|
||||
* @param _basisSize Number of basis vectors.
|
||||
* @param _sparseRate Controls density of sparse matches.
|
||||
* @param _retainedCornersFraction Retained corners fraction.
|
||||
* @param _occlusionsThreshold Occlusion threshold.
|
||||
* @param _dampingFactor Regularization term for solving least-squares. It is not related to the prior regularization.
|
||||
* @param _claheClip Clip parameter for CLAHE.
|
||||
*/
|
||||
OpticalFlowPCAFlow( Ptr<const PCAPrior> _prior = Ptr<const PCAPrior>(), const Size _basisSize = Size( 18, 14 ),
|
||||
float _sparseRate = 0.024, float _retainedCornersFraction = 0.2,
|
||||
float _occlusionsThreshold = 0.0003, float _dampingFactor = 0.00002, float _claheClip = 14 );
|
||||
|
||||
void calc( InputArray I0, InputArray I1, InputOutputArray flow ) CV_OVERRIDE;
|
||||
void collectGarbage() CV_OVERRIDE;
|
||||
|
||||
private:
|
||||
void findSparseFeatures( UMat &from, UMat &to, std::vector<Point2f> &features,
|
||||
std::vector<Point2f> &predictedFeatures ) const;
|
||||
|
||||
void removeOcclusions( UMat &from, UMat &to, std::vector<Point2f> &features,
|
||||
std::vector<Point2f> &predictedFeatures ) const;
|
||||
|
||||
void getSystem( OutputArray AOut, OutputArray b1Out, OutputArray b2Out, const std::vector<Point2f> &features,
|
||||
const std::vector<Point2f> &predictedFeatures, const Size size );
|
||||
|
||||
void getSystem( OutputArray A1Out, OutputArray A2Out, OutputArray b1Out, OutputArray b2Out,
|
||||
const std::vector<Point2f> &features, const std::vector<Point2f> &predictedFeatures,
|
||||
const Size size );
|
||||
|
||||
OpticalFlowPCAFlow& operator=( const OpticalFlowPCAFlow& ); // make it non-assignable
|
||||
};
|
||||
|
||||
/** @brief Creates an instance of PCAFlow
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_PCAFlow();
|
||||
|
||||
//! @}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
553
3rdparty/opencv/inc/opencv2/optflow/rlofflow.hpp
vendored
Normal file
553
3rdparty/opencv/inc/opencv2/optflow/rlofflow.hpp
vendored
Normal file
@@ -0,0 +1,553 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#ifndef __OPENCV_OPTFLOW_RLOFFLOW_HPP__
|
||||
#define __OPENCV_OPTFLOW_RLOFFLOW_HPP__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/video.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace optflow
|
||||
{
|
||||
//! @addtogroup optflow
|
||||
//! @{
|
||||
|
||||
enum SupportRegionType {
|
||||
SR_FIXED = 0, /**< Apply a constant support region */
|
||||
SR_CROSS = 1 /**< Apply a adaptive support region obtained by cross-based segmentation
|
||||
* as described in @cite Senst2014
|
||||
*/
|
||||
};
|
||||
enum SolverType {
|
||||
ST_STANDART = 0, /**< Apply standard iterative refinement */
|
||||
ST_BILINEAR = 1 /**< Apply optimized iterative refinement based bilinear equation solutions
|
||||
* as described in @cite Senst2013
|
||||
*/
|
||||
};
|
||||
|
||||
enum InterpolationType
|
||||
{
|
||||
INTERP_GEO = 0, /**< Fast geodesic interpolation, see @cite Geistert2016 */
|
||||
INTERP_EPIC = 1, /**< Edge-preserving interpolation using ximgproc::EdgeAwareInterpolator, see @cite Revaud2015,Geistert2016. */
|
||||
INTERP_RIC = 2, /**< SLIC based robust interpolation using ximgproc::RICInterpolator, see @cite Hu2017. */
|
||||
};
|
||||
|
||||
/** @brief This is used store and set up the parameters of the robust local optical flow (RLOF) algoritm.
|
||||
*
|
||||
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
|
||||
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
|
||||
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
|
||||
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
|
||||
* This RLOF implementation can be seen as an improved pyramidal iterative Lucas-Kanade and includes
|
||||
* a set of improving modules. The main improvements in respect to the pyramidal iterative Lucas-Kanade
|
||||
* are:
|
||||
* - A more robust redecending M-estimator framework (see @cite Senst2012) to improve the accuracy at
|
||||
* motion boundaries and appearing and disappearing pixels.
|
||||
* - an adaptive support region strategies to improve the accuracy at motion boundaries to reduce the
|
||||
* corona effect, i.e oversmoothing of the PLK at motion/object boundaries. The cross-based segementation
|
||||
* strategy (SR_CROSS) proposed in @cite Senst2014 uses a simple segmenation approach to obtain the optimal
|
||||
* shape of the support region.
|
||||
* - To deal with illumination changes (outdoor sequences and shadow) the intensity constancy assumption
|
||||
* based optical flow equation has been adopt with the Gennert and Negahdaripour illumination model
|
||||
* (see @cite Senst2016). This model can be switched on/off with the useIlluminationModel variable.
|
||||
* - By using a global motion prior initialization (see @cite Senst2016) of the iterative refinement
|
||||
* the accuracy could be significantly improved for large displacements. This initialization can be
|
||||
* switched on and of with useGlobalMotionPrior variable.
|
||||
*
|
||||
* The RLOF can be computed with the SparseOpticalFlow class or function interface to track a set of features
|
||||
* or with the DenseOpticalFlow class or function interface to compute dense optical flow.
|
||||
*
|
||||
* @see optflow::DenseRLOFOpticalFlow, optflow::calcOpticalFlowDenseRLOF(), optflow::SparseRLOFOpticalFlow, optflow::calcOpticalFlowSparseRLOF()
|
||||
*/
|
||||
class CV_EXPORTS_W RLOFOpticalFlowParameter{
|
||||
public:
|
||||
RLOFOpticalFlowParameter()
|
||||
:solverType(ST_BILINEAR)
|
||||
,supportRegionType(SR_CROSS)
|
||||
,normSigma0(std::numeric_limits<float>::max())
|
||||
,normSigma1(std::numeric_limits<float>::max())
|
||||
,smallWinSize(9)
|
||||
,largeWinSize(21)
|
||||
,crossSegmentationThreshold(25)
|
||||
,maxLevel(4)
|
||||
,useInitialFlow(false)
|
||||
,useIlluminationModel(true)
|
||||
,useGlobalMotionPrior(true)
|
||||
,maxIteration(30)
|
||||
,minEigenValue(0.0001f)
|
||||
,globalMotionRansacThreshold(10)
|
||||
{}
|
||||
|
||||
SolverType solverType;
|
||||
/**< Variable specifies the iterative refinement strategy. Please consider citing @cite Senst2013 when
|
||||
* using ST_BILINEAR.
|
||||
*/
|
||||
|
||||
SupportRegionType supportRegionType;
|
||||
/**< Variable specifies the support region shape extraction or shrinking strategy.
|
||||
*/
|
||||
|
||||
float normSigma0;
|
||||
/**< &sigma parameter of the shrinked Hampel norm introduced in @cite Senst2012. If
|
||||
* &sigma = std::numeric_limist<float>::max() the least-square estimator will be used
|
||||
* instead of the M-estimator. Althoug M-estimator is more robust against outlier in the support
|
||||
* region the least-square can be fast in computation.
|
||||
*/
|
||||
float normSigma1;
|
||||
/**< &sigma parameter of the shrinked Hampel norm introduced in @cite Senst2012. If
|
||||
* &sigma = std::numeric_limist<float>::max() the least-square estimator will be used
|
||||
* instead of the M-estimator. Althoug M-estimator is more robust against outlier in the support
|
||||
* region the least-square can be fast in computation.
|
||||
*/
|
||||
int smallWinSize;
|
||||
/**< Minimal window size of the support region. This parameter is only used if supportRegionType is SR_CROSS.
|
||||
*/
|
||||
int largeWinSize;
|
||||
/**< Maximal window size of the support region. If supportRegionType is SR_FIXED this gives the exact support
|
||||
* region size. The speed of the RLOF is related to the applied win sizes. The smaller the window size the lower is the runtime,
|
||||
* but the more sensitive to noise is the method.
|
||||
*/
|
||||
int crossSegmentationThreshold;
|
||||
/**< Color similarity threshold used by cross-based segmentation following @cite Senst2014 .
|
||||
* (Only used if supportRegionType is SR_CROSS). With the cross-bassed segmentation
|
||||
* motion boundaries can be computed more accurately.
|
||||
*/
|
||||
int maxLevel;
|
||||
/**< Maximal number of pyramid level used. The large this value is the more likely it is
|
||||
* to obtain accurate solutions for long-range motions. The runtime is linear related to
|
||||
* this parameter.
|
||||
*/
|
||||
bool useInitialFlow;
|
||||
/**< Use next point list as initial values. A good intialization can imporve the algortihm
|
||||
* accuracy and reduce the runtime by a faster convergence of the iteration refinement.
|
||||
*/
|
||||
bool useIlluminationModel;
|
||||
/**< Use the Gennert and Negahdaripour illumination model instead of the intensity brigthness
|
||||
* constraint. (proposed in @cite Senst2016 ) This model is defined as follow:
|
||||
* \f[ I(\mathbf{x},t) + m \cdot I(\mathbf{x},t) + c = I(\mathbf{x},t+1) \f]
|
||||
* and contains with m and c a multiplicative and additive term which makes the estimate
|
||||
* more robust against illumination changes. The computational complexity is increased by
|
||||
* enabling the illumination model.
|
||||
*/
|
||||
bool useGlobalMotionPrior;
|
||||
/**< Use global motion prior initialisation has been introduced in @cite Senst2016 . It
|
||||
* allows to be more accurate for long-range motion. The computational complexity is
|
||||
* slightly increased by enabling the global motion prior initialisation.
|
||||
*/
|
||||
int maxIteration;
|
||||
/**< Number of maximal iterations used for the iterative refinement. Lower values can
|
||||
* reduce the runtime but also the accuracy.
|
||||
*/
|
||||
float minEigenValue;
|
||||
/**< Threshold for the minimal eigenvalue of the gradient matrix defines when to abort the
|
||||
* iterative refinement.
|
||||
*/
|
||||
float globalMotionRansacThreshold;
|
||||
/**< To apply the global motion prior motion vectors will be computed on a regulary sampled which
|
||||
* are the basis for Homography estimation using RANSAC. The reprojection threshold is based on
|
||||
* n-th percentil (given by this value [0 ... 100]) of the motion vectors magnitude.
|
||||
* See @cite Senst2016 for more details.
|
||||
*/
|
||||
|
||||
//! @brief Enable M-estimator or disable and use least-square estimator.
|
||||
/** Enables M-estimator by setting sigma parameters to (3.2, 7.0). Disabling M-estimator can reduce
|
||||
* runtime, while enabling can improve the accuracy.
|
||||
* @param val If true M-estimator is used. If false least-square estimator is used.
|
||||
* @see setNormSigma0, setNormSigma1
|
||||
*/
|
||||
CV_WRAP void setUseMEstimator(bool val);
|
||||
|
||||
CV_WRAP void setSolverType(SolverType val);
|
||||
CV_WRAP SolverType getSolverType() const;
|
||||
|
||||
CV_WRAP void setSupportRegionType(SupportRegionType val);
|
||||
CV_WRAP SupportRegionType getSupportRegionType() const;
|
||||
|
||||
CV_WRAP void setNormSigma0(float val);
|
||||
CV_WRAP float getNormSigma0() const;
|
||||
|
||||
CV_WRAP void setNormSigma1(float val);
|
||||
CV_WRAP float getNormSigma1() const;
|
||||
|
||||
CV_WRAP void setSmallWinSize(int val);
|
||||
CV_WRAP int getSmallWinSize() const;
|
||||
|
||||
CV_WRAP void setLargeWinSize(int val);
|
||||
CV_WRAP int getLargeWinSize() const;
|
||||
|
||||
CV_WRAP void setCrossSegmentationThreshold(int val);
|
||||
CV_WRAP int getCrossSegmentationThreshold() const;
|
||||
|
||||
CV_WRAP void setMaxLevel(int val);
|
||||
CV_WRAP int getMaxLevel() const;
|
||||
|
||||
CV_WRAP void setUseInitialFlow(bool val);
|
||||
CV_WRAP bool getUseInitialFlow() const;
|
||||
|
||||
CV_WRAP void setUseIlluminationModel(bool val);
|
||||
CV_WRAP bool getUseIlluminationModel() const;
|
||||
|
||||
CV_WRAP void setUseGlobalMotionPrior(bool val);
|
||||
CV_WRAP bool getUseGlobalMotionPrior() const;
|
||||
|
||||
CV_WRAP void setMaxIteration(int val);
|
||||
CV_WRAP int getMaxIteration() const;
|
||||
|
||||
CV_WRAP void setMinEigenValue(float val);
|
||||
CV_WRAP float getMinEigenValue() const;
|
||||
|
||||
CV_WRAP void setGlobalMotionRansacThreshold(float val);
|
||||
CV_WRAP float getGlobalMotionRansacThreshold() const;
|
||||
|
||||
//! @brief Creates instance of optflow::RLOFOpticalFlowParameter
|
||||
CV_WRAP static Ptr<RLOFOpticalFlowParameter> create();
|
||||
};
|
||||
|
||||
/** @brief Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation
|
||||
* scheme.
|
||||
*
|
||||
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
|
||||
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
|
||||
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
|
||||
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
|
||||
*
|
||||
* The sparse-to-dense interpolation scheme allows for fast computation of dense optical flow using RLOF (see @cite Geistert2016).
|
||||
* For this scheme the following steps are applied:
|
||||
* -# motion vector seeded at a regular sampled grid are computed. The sparsity of this grid can be configured with setGridStep
|
||||
* -# (optinally) errornous motion vectors are filter based on the forward backward confidence. The threshold can be configured
|
||||
* with setForwardBackward. The filter is only applied if the threshold >0 but than the runtime is doubled due to the estimation
|
||||
* of the backward flow.
|
||||
* -# Vector field interpolation is applied to the motion vector set to obtain a dense vector field.
|
||||
*
|
||||
* For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
|
||||
* Parameters have been described in @cite Senst2012 @cite Senst2013 @cite Senst2014 and @cite Senst2016.
|
||||
*
|
||||
* @note If the grid size is set to (1,1) and the forward backward threshold <= 0 than pixelwise dense optical flow field is
|
||||
* computed by RLOF without using interpolation.
|
||||
*
|
||||
* @note Note that in output, if no correspondences are found between \a I0 and \a I1, the \a flow is set to 0.
|
||||
* @see optflow::calcOpticalFlowDenseRLOF(), optflow::RLOFOpticalFlowParameter
|
||||
*/
|
||||
class CV_EXPORTS_W DenseRLOFOpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
//! @brief Configuration of the RLOF alogrithm.
|
||||
/**
|
||||
@see optflow::RLOFOpticalFlowParameter, getRLOFOpticalFlowParameter
|
||||
*/
|
||||
CV_WRAP virtual void setRLOFOpticalFlowParameter(Ptr<RLOFOpticalFlowParameter> val) = 0;
|
||||
/** @copybrief setRLOFOpticalFlowParameter
|
||||
@see optflow::RLOFOpticalFlowParameter, setRLOFOpticalFlowParameter
|
||||
*/
|
||||
CV_WRAP virtual Ptr<RLOFOpticalFlowParameter> getRLOFOpticalFlowParameter() const = 0;
|
||||
//! @brief Threshold for the forward backward confidence check
|
||||
/**For each grid point \f$ \mathbf{x} \f$ a motion vector \f$ d_{I0,I1}(\mathbf{x}) \f$ is computed.
|
||||
* If the forward backward error \f[ EP_{FB} = || d_{I0,I1} + d_{I1,I0} || \f]
|
||||
* is larger than threshold given by this function then the motion vector will not be used by the following
|
||||
* vector field interpolation. \f$ d_{I1,I0} \f$ denotes the backward flow. Note, the forward backward test
|
||||
* will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
|
||||
* @see getForwardBackward, setGridStep
|
||||
*/
|
||||
CV_WRAP virtual void setForwardBackward(float val) = 0;
|
||||
/** @copybrief setForwardBackward
|
||||
@see setForwardBackward
|
||||
*/
|
||||
CV_WRAP virtual float getForwardBackward() const = 0;
|
||||
//! @brief Size of the grid to spawn the motion vectors.
|
||||
/** For each grid point a motion vector is computed. Some motion vectors will be removed due to the forwatd backward
|
||||
* threshold (if set >0). The rest will be the base of the vector field interpolation.
|
||||
* @see getForwardBackward, setGridStep
|
||||
*/
|
||||
CV_WRAP virtual Size getGridStep() const = 0;
|
||||
/** @copybrief getGridStep
|
||||
* @see getGridStep
|
||||
*/
|
||||
CV_WRAP virtual void setGridStep(Size val) = 0;
|
||||
|
||||
//! @brief Interpolation used to compute the dense optical flow.
|
||||
/** Two interpolation algorithms are supported
|
||||
* - **INTERP_GEO** applies the fast geodesic interpolation, see @cite Geistert2016.
|
||||
* - **INTERP_EPIC_RESIDUAL** applies the edge-preserving interpolation, see @cite Revaud2015,Geistert2016.
|
||||
* @see ximgproc::EdgeAwareInterpolator, getInterpolation
|
||||
*/
|
||||
CV_WRAP virtual void setInterpolation(InterpolationType val) = 0;
|
||||
/** @copybrief setInterpolation
|
||||
* @see ximgproc::EdgeAwareInterpolator, setInterpolation
|
||||
*/
|
||||
CV_WRAP virtual InterpolationType getInterpolation() const = 0;
|
||||
//! @brief see ximgproc::EdgeAwareInterpolator() K value.
|
||||
/** K is a number of nearest-neighbor matches considered, when fitting a locally affine
|
||||
* model. Usually it should be around 128. However, lower values would make the interpolation noticeably faster.
|
||||
* @see ximgproc::EdgeAwareInterpolator, setEPICK
|
||||
*/
|
||||
CV_WRAP virtual int getEPICK() const = 0;
|
||||
/** @copybrief getEPICK
|
||||
* @see ximgproc::EdgeAwareInterpolator, getEPICK
|
||||
*/
|
||||
CV_WRAP virtual void setEPICK(int val) = 0;
|
||||
//! @brief see ximgproc::EdgeAwareInterpolator() sigma value.
|
||||
/** Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
|
||||
* fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
|
||||
* output flow.
|
||||
* @see ximgproc::EdgeAwareInterpolator, setEPICSigma
|
||||
*/
|
||||
CV_WRAP virtual float getEPICSigma() const = 0;
|
||||
/** @copybrief getEPICSigma
|
||||
* @see ximgproc::EdgeAwareInterpolator, getEPICSigma
|
||||
*/
|
||||
CV_WRAP virtual void setEPICSigma(float val) = 0;
|
||||
//! @brief see ximgproc::EdgeAwareInterpolator() lambda value.
|
||||
/** Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
|
||||
* should be in the range of 0 to 1000.
|
||||
* @see ximgproc::EdgeAwareInterpolator, setEPICSigma
|
||||
*/
|
||||
CV_WRAP virtual float getEPICLambda() const = 0;
|
||||
/** @copybrief getEPICLambda
|
||||
* @see ximgproc::EdgeAwareInterpolator, getEPICLambda
|
||||
*/
|
||||
CV_WRAP virtual void setEPICLambda(float val) = 0;
|
||||
//! @brief see ximgproc::EdgeAwareInterpolator().
|
||||
/** Sets the respective fastGlobalSmootherFilter() parameter.
|
||||
* @see ximgproc::EdgeAwareInterpolator, setFgsLambda
|
||||
*/
|
||||
CV_WRAP virtual float getFgsLambda() const = 0;
|
||||
/** @copybrief getFgsLambda
|
||||
* @see ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, getFgsLambda
|
||||
*/
|
||||
CV_WRAP virtual void setFgsLambda(float val) = 0;
|
||||
//! @brief see ximgproc::EdgeAwareInterpolator().
|
||||
/** Sets the respective fastGlobalSmootherFilter() parameter.
|
||||
* @see ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, setFgsSigma
|
||||
*/
|
||||
CV_WRAP virtual float getFgsSigma() const = 0;
|
||||
/** @copybrief getFgsSigma
|
||||
* @see ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, getFgsSigma
|
||||
*/
|
||||
CV_WRAP virtual void setFgsSigma(float val) = 0;
|
||||
//! @brief enables ximgproc::fastGlobalSmootherFilter
|
||||
/**
|
||||
* @see getUsePostProc
|
||||
*/
|
||||
CV_WRAP virtual void setUsePostProc(bool val) = 0;
|
||||
/** @copybrief setUsePostProc
|
||||
* @see ximgproc::fastGlobalSmootherFilter, setUsePostProc
|
||||
*/
|
||||
CV_WRAP virtual bool getUsePostProc() const = 0;
|
||||
//! @brief enables VariationalRefinement
|
||||
/**
|
||||
* @see getUseVariationalRefinement
|
||||
*/
|
||||
CV_WRAP virtual void setUseVariationalRefinement(bool val) = 0;
|
||||
/** @copybrief setUseVariationalRefinement
|
||||
* @see ximgproc::fastGlobalSmootherFilter, setUsePostProc
|
||||
*/
|
||||
CV_WRAP virtual bool getUseVariationalRefinement() const = 0;
|
||||
//! @brief Parameter to tune the approximate size of the superpixel used for oversegmentation.
|
||||
/**
|
||||
* @see cv::ximgproc::createSuperpixelSLIC, cv::ximgproc::RICInterpolator
|
||||
*/
|
||||
CV_WRAP virtual void setRICSPSize(int val) = 0;
|
||||
/** @copybrief setRICSPSize
|
||||
* @see setRICSPSize
|
||||
*/
|
||||
CV_WRAP virtual int getRICSPSize() const = 0;
|
||||
/** @brief Parameter to choose superpixel algorithm variant to use:
|
||||
* - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
|
||||
* - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
|
||||
* - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
|
||||
* @see cv::ximgproc::createSuperpixelSLIC, cv::ximgproc::RICInterpolator
|
||||
*/
|
||||
CV_WRAP virtual void setRICSLICType(int val) = 0;
|
||||
/** @copybrief setRICSLICType
|
||||
* @see setRICSLICType
|
||||
*/
|
||||
CV_WRAP virtual int getRICSLICType() const = 0;
|
||||
//! @brief Creates instance of optflow::DenseRLOFOpticalFlow
|
||||
/**
|
||||
* @param rlofParam see optflow::RLOFOpticalFlowParameter
|
||||
* @param forwardBackwardThreshold see setForwardBackward
|
||||
* @param gridStep see setGridStep
|
||||
* @param interp_type see setInterpolation
|
||||
* @param epicK see setEPICK
|
||||
* @param epicSigma see setEPICSigma
|
||||
* @param epicLambda see setEPICLambda
|
||||
* @param ricSPSize see setRICSPSize
|
||||
* @param ricSLICType see setRICSLICType
|
||||
* @param use_post_proc see setUsePostProc
|
||||
* @param fgsLambda see setFgsLambda
|
||||
* @param fgsSigma see setFgsSigma
|
||||
* @param use_variational_refinement see setUseVariationalRefinement
|
||||
*/
|
||||
CV_WRAP static Ptr<DenseRLOFOpticalFlow> create(
|
||||
Ptr<RLOFOpticalFlowParameter> rlofParam = Ptr<RLOFOpticalFlowParameter>(),
|
||||
float forwardBackwardThreshold = 1.f,
|
||||
Size gridStep = Size(6, 6),
|
||||
InterpolationType interp_type = InterpolationType::INTERP_EPIC,
|
||||
int epicK = 128,
|
||||
float epicSigma = 0.05f,
|
||||
float epicLambda = 999.0f,
|
||||
int ricSPSize = 15,
|
||||
int ricSLICType = 100,
|
||||
bool use_post_proc = true,
|
||||
float fgsLambda = 500.0f,
|
||||
float fgsSigma = 1.5f,
|
||||
bool use_variational_refinement = false);
|
||||
};
|
||||
|
||||
/** @brief Class used for calculation sparse optical flow and feature tracking with robust local optical flow (RLOF) algorithms.
|
||||
*
|
||||
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
|
||||
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
|
||||
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
|
||||
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
|
||||
*
|
||||
* For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
|
||||
* Parameters have been described in @cite Senst2012, @cite Senst2013, @cite Senst2014 and @cite Senst2016.
|
||||
*
|
||||
* @note SIMD parallelization is only available when compiling with SSE4.1.
|
||||
* @see optflow::calcOpticalFlowSparseRLOF(), optflow::RLOFOpticalFlowParameter
|
||||
*/
|
||||
class CV_EXPORTS_W SparseRLOFOpticalFlow : public SparseOpticalFlow
|
||||
{
|
||||
public:
|
||||
/** @copydoc DenseRLOFOpticalFlow::setRLOFOpticalFlowParameter
|
||||
*/
|
||||
CV_WRAP virtual void setRLOFOpticalFlowParameter(Ptr<RLOFOpticalFlowParameter> val) = 0;
|
||||
/** @copybrief setRLOFOpticalFlowParameter
|
||||
* @see setRLOFOpticalFlowParameter
|
||||
*/
|
||||
CV_WRAP virtual Ptr<RLOFOpticalFlowParameter> getRLOFOpticalFlowParameter() const = 0;
|
||||
//! @brief Threshold for the forward backward confidence check
|
||||
/** For each feature point a motion vector \f$ d_{I0,I1}(\mathbf{x}) \f$ is computed.
|
||||
* If the forward backward error \f[ EP_{FB} = || d_{I0,I1} + d_{I1,I0} || \f]
|
||||
* is larger than threshold given by this function then the status will not be used by the following
|
||||
* vector field interpolation. \f$ d_{I1,I0} \f$ denotes the backward flow. Note, the forward backward test
|
||||
* will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
|
||||
* @see setForwardBackward
|
||||
*/
|
||||
CV_WRAP virtual void setForwardBackward(float val) = 0;
|
||||
/** @copybrief setForwardBackward
|
||||
* @see setForwardBackward
|
||||
*/
|
||||
CV_WRAP virtual float getForwardBackward() const = 0;
|
||||
|
||||
//! @brief Creates instance of SparseRLOFOpticalFlow
|
||||
/**
|
||||
* @param rlofParam see setRLOFOpticalFlowParameter
|
||||
* @param forwardBackwardThreshold see setForwardBackward
|
||||
*/
|
||||
CV_WRAP static Ptr<SparseRLOFOpticalFlow> create(
|
||||
Ptr<RLOFOpticalFlowParameter> rlofParam = Ptr<RLOFOpticalFlowParameter>(),
|
||||
float forwardBackwardThreshold = 1.f);
|
||||
|
||||
};
|
||||
|
||||
/** @brief Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation scheme.
|
||||
*
|
||||
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
|
||||
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
|
||||
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
|
||||
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
|
||||
*
|
||||
* The sparse-to-dense interpolation scheme allows for fast computation of dense optical flow using RLOF (see @cite Geistert2016).
|
||||
* For this scheme the following steps are applied:
|
||||
* -# motion vector seeded at a regular sampled grid are computed. The sparsity of this grid can be configured with setGridStep
|
||||
* -# (optinally) errornous motion vectors are filter based on the forward backward confidence. The threshold can be configured
|
||||
* with setForwardBackward. The filter is only applied if the threshold >0 but than the runtime is doubled due to the estimation
|
||||
* of the backward flow.
|
||||
* -# Vector field interpolation is applied to the motion vector set to obtain a dense vector field.
|
||||
*
|
||||
* @param I0 first 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
|
||||
* = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
|
||||
* @param I1 second 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
|
||||
* = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
|
||||
* @param flow computed flow image that has the same size as I0 and type CV_32FC2.
|
||||
* @param rlofParam see optflow::RLOFOpticalFlowParameter
|
||||
* @param forwardBackwardThreshold Threshold for the forward backward confidence check.
|
||||
* For each grid point \f$ \mathbf{x} \f$ a motion vector \f$ d_{I0,I1}(\mathbf{x}) \f$ is computed.
|
||||
* If the forward backward error \f[ EP_{FB} = || d_{I0,I1} + d_{I1,I0} || \f]
|
||||
* is larger than threshold given by this function then the motion vector will not be used by the following
|
||||
* vector field interpolation. \f$ d_{I1,I0} \f$ denotes the backward flow. Note, the forward backward test
|
||||
* will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
|
||||
* @param gridStep Size of the grid to spawn the motion vectors. For each grid point a motion vector is computed.
|
||||
* Some motion vectors will be removed due to the forwatd backward threshold (if set >0). The rest will be the
|
||||
* base of the vector field interpolation.
|
||||
* @param interp_type interpolation method used to compute the dense optical flow. Two interpolation algorithms are
|
||||
* supported:
|
||||
* - **INTERP_GEO** applies the fast geodesic interpolation, see @cite Geistert2016.
|
||||
* - **INTERP_EPIC_RESIDUAL** applies the edge-preserving interpolation, see @cite Revaud2015,Geistert2016.
|
||||
* @param epicK see ximgproc::EdgeAwareInterpolator sets the respective parameter.
|
||||
* @param epicSigma see ximgproc::EdgeAwareInterpolator sets the respective parameter.
|
||||
* @param epicLambda see ximgproc::EdgeAwareInterpolator sets the respective parameter.
|
||||
* @param ricSPSize see ximgproc::RICInterpolator sets the respective parameter.
|
||||
* @param ricSLICType see ximgproc::RICInterpolator sets the respective parameter.
|
||||
* @param use_post_proc enables ximgproc::fastGlobalSmootherFilter() parameter.
|
||||
* @param fgsLambda sets the respective ximgproc::fastGlobalSmootherFilter() parameter.
|
||||
* @param fgsSigma sets the respective ximgproc::fastGlobalSmootherFilter() parameter.
|
||||
* @param use_variational_refinement enables VariationalRefinement
|
||||
*
|
||||
* Parameters have been described in @cite Senst2012, @cite Senst2013, @cite Senst2014, @cite Senst2016.
|
||||
* For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
|
||||
* @note If the grid size is set to (1,1) and the forward backward threshold <= 0 that the dense optical flow field is purely
|
||||
* computed with the RLOF.
|
||||
*
|
||||
* @note SIMD parallelization is only available when compiling with SSE4.1.
|
||||
* @note Note that in output, if no correspondences are found between \a I0 and \a I1, the \a flow is set to 0.
|
||||
*
|
||||
* @sa optflow::DenseRLOFOpticalFlow, optflow::RLOFOpticalFlowParameter
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowDenseRLOF(InputArray I0, InputArray I1, InputOutputArray flow,
|
||||
Ptr<RLOFOpticalFlowParameter> rlofParam = Ptr<RLOFOpticalFlowParameter>(),
|
||||
float forwardBackwardThreshold = 0, Size gridStep = Size(6, 6),
|
||||
InterpolationType interp_type = InterpolationType::INTERP_EPIC,
|
||||
int epicK = 128, float epicSigma = 0.05f, float epicLambda = 100.f,
|
||||
int ricSPSize = 15, int ricSLICType = 100,
|
||||
bool use_post_proc = true, float fgsLambda = 500.0f, float fgsSigma = 1.5f,
|
||||
bool use_variational_refinement = false);
|
||||
|
||||
/** @brief Calculates fast optical flow for a sparse feature set using the robust local optical flow (RLOF) similar
|
||||
* to optflow::calcOpticalFlowPyrLK().
|
||||
*
|
||||
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
|
||||
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
|
||||
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
|
||||
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
|
||||
*
|
||||
* @param prevImg first 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
|
||||
* = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
|
||||
* @param nextImg second 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
|
||||
* = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
|
||||
* @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be single-precision
|
||||
* floating-point numbers.
|
||||
* @param nextPts output vector of 2D points (with single-precision floating-point coordinates) containing the calculated
|
||||
* new positions of input features in the second image; when optflow::RLOFOpticalFlowParameter::useInitialFlow variable is true the vector must
|
||||
* have the same size as in the input and contain the initialization point correspondences.
|
||||
* @param status output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the
|
||||
* corresponding features has passed the forward backward check.
|
||||
* @param err output vector of errors; each element of the vector is set to the forward backward error for the corresponding feature.
|
||||
* @param rlofParam see optflow::RLOFOpticalFlowParameter
|
||||
* @param forwardBackwardThreshold Threshold for the forward backward confidence check. If forewardBackwardThreshold <=0 the forward
|
||||
*
|
||||
* @note SIMD parallelization is only available when compiling with SSE4.1.
|
||||
*
|
||||
* Parameters have been described in @cite Senst2012, @cite Senst2013, @cite Senst2014 and @cite Senst2016.
|
||||
* For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowSparseRLOF(InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
OutputArray status, OutputArray err,
|
||||
Ptr<RLOFOpticalFlowParameter> rlofParam = Ptr<RLOFOpticalFlowParameter>(),
|
||||
float forwardBackwardThreshold = 0);
|
||||
|
||||
//! Additional interface to the Dense RLOF algorithm - optflow::calcOpticalFlowDenseRLOF()
|
||||
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_DenseRLOF();
|
||||
|
||||
//! Additional interface to the Sparse RLOF algorithm - optflow::calcOpticalFlowSparseRLOF()
|
||||
CV_EXPORTS_W Ptr<SparseOpticalFlow> createOptFlow_SparseRLOF();
|
||||
//! @}
|
||||
|
||||
} // namespace
|
||||
} // namespace
|
||||
#endif
|
||||
372
3rdparty/opencv/inc/opencv2/optflow/sparse_matching_gpc.hpp
vendored
Normal file
372
3rdparty/opencv/inc/opencv2/optflow/sparse_matching_gpc.hpp
vendored
Normal file
@@ -0,0 +1,372 @@
|
||||
/*
|
||||
By downloading, copying, installing or using the software you agree to this
|
||||
license. If you do not agree to this license, do not download, install,
|
||||
copy or use the software.
|
||||
|
||||
|
||||
License Agreement
|
||||
For Open Source Computer Vision Library
|
||||
(3-clause BSD License)
|
||||
|
||||
Copyright (C) 2016, OpenCV Foundation, all rights reserved.
|
||||
Third party copyrights are property of their respective owners.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice,
|
||||
this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the names of the copyright holders nor the names of the contributors
|
||||
may be used to endorse or promote products derived from this software
|
||||
without specific prior written permission.
|
||||
|
||||
This software is provided by the copyright holders and contributors "as is" and
|
||||
any express or implied warranties, including, but not limited to, the implied
|
||||
warranties of merchantability and fitness for a particular purpose are
|
||||
disclaimed. In no event shall copyright holders or contributors be liable for
|
||||
any direct, indirect, incidental, special, exemplary, or consequential damages
|
||||
(including, but not limited to, procurement of substitute goods or services;
|
||||
loss of use, data, or profits; or business interruption) however caused
|
||||
and on any theory of liability, whether in contract, strict liability,
|
||||
or tort (including negligence or otherwise) arising in any way out of
|
||||
the use of this software, even if advised of the possibility of such damage.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file sparse_matching_gpc.hpp
|
||||
* @author Vladislav Samsonov <vvladxx@gmail.com>
|
||||
* @brief Implementation of the Global Patch Collider.
|
||||
*
|
||||
* Implementation of the Global Patch Collider algorithm from the following paper:
|
||||
* http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf
|
||||
*
|
||||
* @cite Wang_2016_CVPR
|
||||
*/
|
||||
|
||||
#ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
|
||||
#define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace optflow
|
||||
{
|
||||
|
||||
//! @addtogroup optflow
|
||||
//! @{
|
||||
|
||||
struct CV_EXPORTS_W GPCPatchDescriptor
|
||||
{
|
||||
static const unsigned nFeatures = 18; //!< number of features in a patch descriptor
|
||||
Vec< double, nFeatures > feature;
|
||||
|
||||
double dot( const Vec< double, nFeatures > &coef ) const;
|
||||
|
||||
void markAsSeparated() { feature[0] = std::numeric_limits< double >::quiet_NaN(); }
|
||||
|
||||
bool isSeparated() const { return cvIsNaN( feature[0] ) != 0; }
|
||||
};
|
||||
|
||||
struct CV_EXPORTS_W GPCPatchSample
|
||||
{
|
||||
GPCPatchDescriptor ref;
|
||||
GPCPatchDescriptor pos;
|
||||
GPCPatchDescriptor neg;
|
||||
|
||||
void getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const;
|
||||
};
|
||||
|
||||
typedef std::vector< GPCPatchSample > GPCSamplesVector;
|
||||
|
||||
/** @brief Descriptor types for the Global Patch Collider.
|
||||
*/
|
||||
enum GPCDescType
|
||||
{
|
||||
GPC_DESCRIPTOR_DCT = 0, //!< Better quality but slow
|
||||
GPC_DESCRIPTOR_WHT //!< Worse quality but much faster
|
||||
};
|
||||
|
||||
/** @brief Class encapsulating training samples.
|
||||
*/
|
||||
class CV_EXPORTS_W GPCTrainingSamples
|
||||
{
|
||||
private:
|
||||
GPCSamplesVector samples;
|
||||
int descriptorType;
|
||||
|
||||
public:
|
||||
/** @brief This function can be used to extract samples from a pair of images and a ground truth flow.
|
||||
* Sizes of all the provided vectors must be equal.
|
||||
*/
|
||||
static Ptr< GPCTrainingSamples > create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo,
|
||||
const std::vector< String > >, int descriptorType );
|
||||
|
||||
static Ptr< GPCTrainingSamples > create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
|
||||
int descriptorType );
|
||||
|
||||
size_t size() const { return samples.size(); }
|
||||
|
||||
int type() const { return descriptorType; }
|
||||
|
||||
operator GPCSamplesVector &() { return samples; }
|
||||
};
|
||||
|
||||
/** @brief Class encapsulating training parameters.
|
||||
*/
|
||||
struct GPCTrainingParams
|
||||
{
|
||||
unsigned maxTreeDepth; //!< Maximum tree depth to stop partitioning.
|
||||
int minNumberOfSamples; //!< Minimum number of samples in the node to stop partitioning.
|
||||
int descriptorType; //!< Type of descriptors to use.
|
||||
bool printProgress; //!< Print progress to stdout.
|
||||
|
||||
GPCTrainingParams( unsigned _maxTreeDepth = 20, int _minNumberOfSamples = 3, GPCDescType _descriptorType = GPC_DESCRIPTOR_DCT,
|
||||
bool _printProgress = true )
|
||||
: maxTreeDepth( _maxTreeDepth ), minNumberOfSamples( _minNumberOfSamples ), descriptorType( _descriptorType ),
|
||||
printProgress( _printProgress )
|
||||
{
|
||||
CV_Assert( check() );
|
||||
}
|
||||
|
||||
bool check() const { return maxTreeDepth > 1 && minNumberOfSamples > 1; }
|
||||
};
|
||||
|
||||
/** @brief Class encapsulating matching parameters.
|
||||
*/
|
||||
struct GPCMatchingParams
|
||||
{
|
||||
bool useOpenCL; //!< Whether to use OpenCL to speed up the matching.
|
||||
|
||||
GPCMatchingParams( bool _useOpenCL = false ) : useOpenCL( _useOpenCL ) {}
|
||||
|
||||
GPCMatchingParams( const GPCMatchingParams ¶ms ) : useOpenCL( params.useOpenCL ) {}
|
||||
};
|
||||
|
||||
/** @brief Class for individual tree.
|
||||
*/
|
||||
class CV_EXPORTS_W GPCTree : public Algorithm
|
||||
{
|
||||
public:
|
||||
struct Node
|
||||
{
|
||||
Vec< double, GPCPatchDescriptor::nFeatures > coef; //!< Hyperplane coefficients
|
||||
double rhs; //!< Bias term of the hyperplane
|
||||
unsigned left;
|
||||
unsigned right;
|
||||
|
||||
bool operator==( const Node &n ) const { return coef == n.coef && rhs == n.rhs && left == n.left && right == n.right; }
|
||||
};
|
||||
|
||||
private:
|
||||
typedef GPCSamplesVector::iterator SIter;
|
||||
|
||||
std::vector< Node > nodes;
|
||||
GPCTrainingParams params;
|
||||
|
||||
bool trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth );
|
||||
|
||||
public:
|
||||
void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() );
|
||||
|
||||
void write( FileStorage &fs ) const CV_OVERRIDE;
|
||||
|
||||
void read( const FileNode &fn ) CV_OVERRIDE;
|
||||
|
||||
unsigned findLeafForPatch( const GPCPatchDescriptor &descr ) const;
|
||||
|
||||
static Ptr< GPCTree > create() { return makePtr< GPCTree >(); }
|
||||
|
||||
bool operator==( const GPCTree &t ) const { return nodes == t.nodes; }
|
||||
|
||||
int getDescriptorType() const { return params.descriptorType; }
|
||||
};
|
||||
|
||||
template < int T > class GPCForest : public Algorithm
|
||||
{
|
||||
private:
|
||||
struct Trail
|
||||
{
|
||||
unsigned leaf[T]; //!< Inside which leaf of the tree 0..T the patch fell?
|
||||
Point2i coord; //!< Patch coordinates.
|
||||
|
||||
bool operator==( const Trail &trail ) const { return memcmp( leaf, trail.leaf, sizeof( leaf ) ) == 0; }
|
||||
|
||||
bool operator<( const Trail &trail ) const
|
||||
{
|
||||
for ( int i = 0; i < T - 1; ++i )
|
||||
if ( leaf[i] != trail.leaf[i] )
|
||||
return leaf[i] < trail.leaf[i];
|
||||
return leaf[T - 1] < trail.leaf[T - 1];
|
||||
}
|
||||
};
|
||||
|
||||
class ParallelTrailsFilling : public ParallelLoopBody
|
||||
{
|
||||
private:
|
||||
const GPCForest *forest;
|
||||
const std::vector< GPCPatchDescriptor > *descr;
|
||||
std::vector< Trail > *trails;
|
||||
|
||||
ParallelTrailsFilling &operator=( const ParallelTrailsFilling & );
|
||||
|
||||
public:
|
||||
ParallelTrailsFilling( const GPCForest *_forest, const std::vector< GPCPatchDescriptor > *_descr, std::vector< Trail > *_trails )
|
||||
: forest( _forest ), descr( _descr ), trails( _trails ){};
|
||||
|
||||
void operator()( const Range &range ) const CV_OVERRIDE
|
||||
{
|
||||
for ( int t = range.start; t < range.end; ++t )
|
||||
for ( size_t i = 0; i < descr->size(); ++i )
|
||||
trails->at( i ).leaf[t] = forest->tree[t].findLeafForPatch( descr->at( i ) );
|
||||
}
|
||||
};
|
||||
|
||||
GPCTree tree[T];
|
||||
|
||||
public:
|
||||
/** @brief Train the forest using one sample set for every tree.
|
||||
* Please, consider using the next method instead of this one for better quality.
|
||||
*/
|
||||
void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() )
|
||||
{
|
||||
for ( int i = 0; i < T; ++i )
|
||||
tree[i].train( samples, params );
|
||||
}
|
||||
|
||||
/** @brief Train the forest using individual samples for each tree.
|
||||
* It is generally better to use this instead of the first method.
|
||||
*/
|
||||
void train( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, const std::vector< String > >,
|
||||
const GPCTrainingParams params = GPCTrainingParams() )
|
||||
{
|
||||
for ( int i = 0; i < T; ++i )
|
||||
{
|
||||
Ptr< GPCTrainingSamples > samples =
|
||||
GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
|
||||
tree[i].train( *samples, params );
|
||||
}
|
||||
}
|
||||
|
||||
void train( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
|
||||
const GPCTrainingParams params = GPCTrainingParams() )
|
||||
{
|
||||
for ( int i = 0; i < T; ++i )
|
||||
{
|
||||
Ptr< GPCTrainingSamples > samples =
|
||||
GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
|
||||
tree[i].train( *samples, params );
|
||||
}
|
||||
}
|
||||
|
||||
void write( FileStorage &fs ) const CV_OVERRIDE
|
||||
{
|
||||
fs << "ntrees" << T << "trees"
|
||||
<< "[";
|
||||
for ( int i = 0; i < T; ++i )
|
||||
{
|
||||
fs << "{";
|
||||
tree[i].write( fs );
|
||||
fs << "}";
|
||||
}
|
||||
fs << "]";
|
||||
}
|
||||
|
||||
void read( const FileNode &fn ) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert( T <= (int)fn["ntrees"] );
|
||||
FileNodeIterator it = fn["trees"].begin();
|
||||
for ( int i = 0; i < T; ++i, ++it )
|
||||
tree[i].read( *it );
|
||||
}
|
||||
|
||||
/** @brief Find correspondences between two images.
|
||||
* @param[in] imgFrom First image in a sequence.
|
||||
* @param[in] imgTo Second image in a sequence.
|
||||
* @param[out] corr Output vector with pairs of corresponding points.
|
||||
* @param[in] params Additional matching parameters for fine-tuning.
|
||||
*/
|
||||
void findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
|
||||
const GPCMatchingParams params = GPCMatchingParams() ) const;
|
||||
|
||||
static Ptr< GPCForest > create() { return makePtr< GPCForest >(); }
|
||||
};
|
||||
|
||||
class CV_EXPORTS_W GPCDetails
|
||||
{
|
||||
public:
|
||||
static void dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr );
|
||||
|
||||
static void getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp,
|
||||
int type );
|
||||
|
||||
static void getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y );
|
||||
};
|
||||
|
||||
template < int T >
|
||||
void GPCForest< T >::findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
|
||||
const GPCMatchingParams params ) const
|
||||
{
|
||||
CV_Assert( imgFrom.channels() == 3 );
|
||||
CV_Assert( imgTo.channels() == 3 );
|
||||
|
||||
Mat from, to;
|
||||
imgFrom.getMat().convertTo( from, CV_32FC3 );
|
||||
imgTo.getMat().convertTo( to, CV_32FC3 );
|
||||
cvtColor( from, from, COLOR_BGR2YCrCb );
|
||||
cvtColor( to, to, COLOR_BGR2YCrCb );
|
||||
|
||||
Mat fromCh[3], toCh[3];
|
||||
split( from, fromCh );
|
||||
split( to, toCh );
|
||||
|
||||
std::vector< GPCPatchDescriptor > descr;
|
||||
GPCDetails::getAllDescriptorsForImage( fromCh, descr, params, tree[0].getDescriptorType() );
|
||||
std::vector< Trail > trailsFrom( descr.size() ), trailsTo( descr.size() );
|
||||
|
||||
for ( size_t i = 0; i < descr.size(); ++i )
|
||||
GPCDetails::getCoordinatesFromIndex( i, from.size(), trailsFrom[i].coord.x, trailsFrom[i].coord.y );
|
||||
parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsFrom ) );
|
||||
|
||||
descr.clear();
|
||||
GPCDetails::getAllDescriptorsForImage( toCh, descr, params, tree[0].getDescriptorType() );
|
||||
|
||||
for ( size_t i = 0; i < descr.size(); ++i )
|
||||
GPCDetails::getCoordinatesFromIndex( i, to.size(), trailsTo[i].coord.x, trailsTo[i].coord.y );
|
||||
parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsTo ) );
|
||||
|
||||
std::sort( trailsFrom.begin(), trailsFrom.end() );
|
||||
std::sort( trailsTo.begin(), trailsTo.end() );
|
||||
|
||||
for ( size_t i = 0; i < trailsFrom.size(); ++i )
|
||||
{
|
||||
bool uniq = true;
|
||||
while ( i + 1 < trailsFrom.size() && trailsFrom[i] == trailsFrom[i + 1] )
|
||||
++i, uniq = false;
|
||||
if ( uniq )
|
||||
{
|
||||
typename std::vector< Trail >::const_iterator lb = std::lower_bound( trailsTo.begin(), trailsTo.end(), trailsFrom[i] );
|
||||
if ( lb != trailsTo.end() && *lb == trailsFrom[i] && ( ( lb + 1 ) == trailsTo.end() || !( *lb == *( lb + 1 ) ) ) )
|
||||
corr.push_back( std::make_pair( trailsFrom[i].coord, lb->coord ) );
|
||||
}
|
||||
}
|
||||
|
||||
GPCDetails::dropOutliers( corr );
|
||||
}
|
||||
|
||||
//! @}
|
||||
|
||||
} // namespace optflow
|
||||
|
||||
CV_EXPORTS void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node );
|
||||
|
||||
CV_EXPORTS void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node );
|
||||
} // namespace cv
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user