fast-yolo4/3rdparty/opencv/inc/opencv2/ximgproc/sparse_match_interpolator.hpp

271 lines
12 KiB
C++
Raw Permalink Normal View History

2024-09-25 09:43:03 +08:00
/*
* By downloading, copying, installing or using the software you agree to this license.
* If you do not agree to this license, do not download, install,
* copy or use the software.
*
*
* License Agreement
* For Open Source Computer Vision Library
* (3 - clause BSD License)
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met :
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall copyright holders or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort(including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_SPARSEMATCHINTERPOLATOR_HPP__
#define __OPENCV_SPARSEMATCHINTERPOLATOR_HPP__
#ifdef __cplusplus
#include <opencv2/core.hpp>
namespace cv {
namespace ximgproc {
//! @addtogroup ximgproc_filters
//! @{
/** @brief Main interface for all filters, that take sparse matches as an
input and produce a dense per-pixel matching (optical flow) as an output.
*/
class CV_EXPORTS_W SparseMatchInterpolator : public Algorithm
{
public:
/** @brief Interpolate input sparse matches.
@param from_image first of the two matched images, 8-bit single-channel or three-channel.
@param from_points points of the from_image for which there are correspondences in the
to_image (Point2f vector or Mat of depth CV_32F)
@param to_image second of the two matched images, 8-bit single-channel or three-channel.
@param to_points points in the to_image corresponding to from_points
(Point2f vector or Mat of depth CV_32F)
@param dense_flow output dense matching (two-channel CV_32F image)
*/
CV_WRAP virtual void interpolate(InputArray from_image, InputArray from_points,
InputArray to_image , InputArray to_points,
OutputArray dense_flow) = 0;
};
/** @brief Sparse match interpolation algorithm based on modified locally-weighted affine
estimator from @cite Revaud2015 and Fast Global Smoother as post-processing filter.
*/
class CV_EXPORTS_W EdgeAwareInterpolator : public SparseMatchInterpolator
{
public:
/** @brief Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term.
* This implementation is based on a rather simple gradient-based edge map estimation.
* To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been
* used in the original publication) that may lead to improved accuracies, the internal
* edge map estimation can be bypassed here.
* @param _costMap a type CV_32FC1 Mat is required.
* @see cv::ximgproc::createSuperpixelSLIC
*/
CV_WRAP virtual void setCostMap(const Mat & _costMap) = 0;
/** @brief Parameter to tune the approximate size of the superpixel used for oversegmentation.
* @see cv::ximgproc::createSuperpixelSLIC
*/
/** @brief K is a number of nearest-neighbor matches considered, when fitting a locally affine
model. Usually it should be around 128. However, lower values would make the interpolation
noticeably faster.
*/
CV_WRAP virtual void setK(int _k) = 0;
/** @see setK */
CV_WRAP virtual int getK() = 0;
/** @brief Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
output flow.
*/
CV_WRAP virtual void setSigma(float _sigma) = 0;
/** @see setSigma */
CV_WRAP virtual float getSigma() = 0;
/** @brief Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
should be in the range of 0 to 1000.
*/
CV_WRAP virtual void setLambda(float _lambda) = 0;
/** @see setLambda */
CV_WRAP virtual float getLambda() = 0;
/** @brief Sets whether the fastGlobalSmootherFilter() post-processing is employed. It is turned on by
default.
*/
CV_WRAP virtual void setUsePostProcessing(bool _use_post_proc) = 0;
/** @see setUsePostProcessing */
CV_WRAP virtual bool getUsePostProcessing() = 0;
/** @brief Sets the respective fastGlobalSmootherFilter() parameter.
*/
CV_WRAP virtual void setFGSLambda(float _lambda) = 0;
/** @see setFGSLambda */
CV_WRAP virtual float getFGSLambda() = 0;
/** @see setFGSLambda */
CV_WRAP virtual void setFGSSigma(float _sigma) = 0;
/** @see setFGSLambda */
CV_WRAP virtual float getFGSSigma() = 0;
};
/** @brief Factory method that creates an instance of the
EdgeAwareInterpolator.
*/
CV_EXPORTS_W
Ptr<EdgeAwareInterpolator> createEdgeAwareInterpolator();
/** @brief Sparse match interpolation algorithm based on modified piecewise locally-weighted affine
* estimator called Robust Interpolation method of Correspondences or RIC from @cite Hu2017 and Variational
* and Fast Global Smoother as post-processing filter. The RICInterpolator is a extension of the EdgeAwareInterpolator.
* Main concept of this extension is an piece-wise affine model based on over-segmentation via SLIC superpixel estimation.
* The method contains an efficient propagation mechanism to estimate among the pieces-wise models.
*/
class CV_EXPORTS_W RICInterpolator : public SparseMatchInterpolator
{
public:
/** @brief K is a number of nearest-neighbor matches considered, when fitting a locally affine
*model for a superpixel segment. However, lower values would make the interpolation
*noticeably faster. The original implementation of @cite Hu2017 uses 32.
*/
CV_WRAP virtual void setK(int k = 32) = 0;
/** @copybrief setK
* @see setK
*/
CV_WRAP virtual int getK() const = 0;
/** @brief Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term.
* This implementation is based on a rather simple gradient-based edge map estimation.
* To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been
* used in the original publication) that may lead to improved accuracies, the internal
* edge map estimation can be bypassed here.
* @param costMap a type CV_32FC1 Mat is required.
* @see cv::ximgproc::createSuperpixelSLIC
*/
CV_WRAP virtual void setCostMap(const Mat & costMap) = 0;
/** @brief Get the internal cost, i.e. edge map, used for estimating the edge-aware term.
* @see setCostMap
*/
CV_WRAP virtual void setSuperpixelSize(int spSize = 15) = 0;
/** @copybrief setSuperpixelSize
* @see setSuperpixelSize
*/
CV_WRAP virtual int getSuperpixelSize() const = 0;
/** @brief Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine
*model.
*/
CV_WRAP virtual void setSuperpixelNNCnt(int spNN = 150) = 0;
/** @copybrief setSuperpixelNNCnt
* @see setSuperpixelNNCnt
*/
CV_WRAP virtual int getSuperpixelNNCnt() const = 0;
/** @brief Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.
* @see cv::ximgproc::createSuperpixelSLIC
*/
CV_WRAP virtual void setSuperpixelRuler(float ruler = 15.f) = 0;
/** @copybrief setSuperpixelRuler
* @see setSuperpixelRuler
*/
CV_WRAP virtual float getSuperpixelRuler() const = 0;
/** @brief Parameter to choose superpixel algorithm variant to use:
* - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
* - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
* - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
* @see cv::ximgproc::createSuperpixelSLIC
*/
CV_WRAP virtual void setSuperpixelMode(int mode = 100) = 0;
/** @copybrief setSuperpixelMode
* @see setSuperpixelMode
*/
CV_WRAP virtual int getSuperpixelMode() const = 0;
/** @brief Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
*/
CV_WRAP virtual void setAlpha(float alpha = 0.7f) = 0;
/** @copybrief setAlpha
* @see setAlpha
*/
CV_WRAP virtual float getAlpha() const = 0;
/** @brief Parameter defining the number of iterations for piece-wise affine model estimation.
*/
CV_WRAP virtual void setModelIter(int modelIter = 4) = 0;
/** @copybrief setModelIter
* @see setModelIter
*/
CV_WRAP virtual int getModelIter() const = 0;
/** @brief Parameter to choose wether additional refinement of the piece-wise affine models is employed.
*/
CV_WRAP virtual void setRefineModels(bool refineModles = true) = 0;
/** @copybrief setRefineModels
* @see setRefineModels
*/
CV_WRAP virtual bool getRefineModels() const = 0;
/** @brief MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.
* If the prediction exceeds the treshold the translational model will be applied instead.
*/
CV_WRAP virtual void setMaxFlow(float maxFlow = 250.f) = 0;
/** @copybrief setMaxFlow
* @see setMaxFlow
*/
CV_WRAP virtual float getMaxFlow() const = 0;
/** @brief Parameter to choose wether the VariationalRefinement post-processing is employed.
*/
CV_WRAP virtual void setUseVariationalRefinement(bool use_variational_refinement = false) = 0;
/** @copybrief setUseVariationalRefinement
* @see setUseVariationalRefinement
*/
CV_WRAP virtual bool getUseVariationalRefinement() const = 0;
/** @brief Sets whether the fastGlobalSmootherFilter() post-processing is employed.
*/
CV_WRAP virtual void setUseGlobalSmootherFilter(bool use_FGS = true) = 0;
/** @copybrief setUseGlobalSmootherFilter
* @see setUseGlobalSmootherFilter
*/
CV_WRAP virtual bool getUseGlobalSmootherFilter() const = 0;
/** @brief Sets the respective fastGlobalSmootherFilter() parameter.
*/
CV_WRAP virtual void setFGSLambda(float lambda = 500.f) = 0;
/** @copybrief setFGSLambda
* @see setFGSLambda
*/
CV_WRAP virtual float getFGSLambda() const = 0;
/** @brief Sets the respective fastGlobalSmootherFilter() parameter.
*/
CV_WRAP virtual void setFGSSigma(float sigma = 1.5f) = 0;
/** @copybrief setFGSSigma
* @see setFGSSigma
*/
CV_WRAP virtual float getFGSSigma() const = 0;
};
/** @brief Factory method that creates an instance of the
RICInterpolator.
*/
CV_EXPORTS_W
Ptr<RICInterpolator> createRICInterpolator();
//! @}
}
}
#endif
#endif