fast-yolo4/3rdparty/opencv/inc/opencv2/optflow/rlofflow.hpp

554 lines
29 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_OPTFLOW_RLOFFLOW_HPP__
#define __OPENCV_OPTFLOW_RLOFFLOW_HPP__
#include "opencv2/core.hpp"
#include "opencv2/video.hpp"
namespace cv
{
namespace optflow
{
//! @addtogroup optflow
//! @{
enum SupportRegionType {
SR_FIXED = 0, /**< Apply a constant support region */
SR_CROSS = 1 /**< Apply a adaptive support region obtained by cross-based segmentation
* as described in @cite Senst2014
*/
};
enum SolverType {
ST_STANDART = 0, /**< Apply standard iterative refinement */
ST_BILINEAR = 1 /**< Apply optimized iterative refinement based bilinear equation solutions
* as described in @cite Senst2013
*/
};
enum InterpolationType
{
INTERP_GEO = 0, /**< Fast geodesic interpolation, see @cite Geistert2016 */
INTERP_EPIC = 1, /**< Edge-preserving interpolation using ximgproc::EdgeAwareInterpolator, see @cite Revaud2015,Geistert2016. */
INTERP_RIC = 2, /**< SLIC based robust interpolation using ximgproc::RICInterpolator, see @cite Hu2017. */
};
/** @brief This is used store and set up the parameters of the robust local optical flow (RLOF) algoritm.
*
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
* This RLOF implementation can be seen as an improved pyramidal iterative Lucas-Kanade and includes
* a set of improving modules. The main improvements in respect to the pyramidal iterative Lucas-Kanade
* are:
* - A more robust redecending M-estimator framework (see @cite Senst2012) to improve the accuracy at
* motion boundaries and appearing and disappearing pixels.
* - an adaptive support region strategies to improve the accuracy at motion boundaries to reduce the
* corona effect, i.e oversmoothing of the PLK at motion/object boundaries. The cross-based segementation
* strategy (SR_CROSS) proposed in @cite Senst2014 uses a simple segmenation approach to obtain the optimal
* shape of the support region.
* - To deal with illumination changes (outdoor sequences and shadow) the intensity constancy assumption
* based optical flow equation has been adopt with the Gennert and Negahdaripour illumination model
* (see @cite Senst2016). This model can be switched on/off with the useIlluminationModel variable.
* - By using a global motion prior initialization (see @cite Senst2016) of the iterative refinement
* the accuracy could be significantly improved for large displacements. This initialization can be
* switched on and of with useGlobalMotionPrior variable.
*
* The RLOF can be computed with the SparseOpticalFlow class or function interface to track a set of features
* or with the DenseOpticalFlow class or function interface to compute dense optical flow.
*
* @see optflow::DenseRLOFOpticalFlow, optflow::calcOpticalFlowDenseRLOF(), optflow::SparseRLOFOpticalFlow, optflow::calcOpticalFlowSparseRLOF()
*/
class CV_EXPORTS_W RLOFOpticalFlowParameter{
public:
RLOFOpticalFlowParameter()
:solverType(ST_BILINEAR)
,supportRegionType(SR_CROSS)
,normSigma0(std::numeric_limits<float>::max())
,normSigma1(std::numeric_limits<float>::max())
,smallWinSize(9)
,largeWinSize(21)
,crossSegmentationThreshold(25)
,maxLevel(4)
,useInitialFlow(false)
,useIlluminationModel(true)
,useGlobalMotionPrior(true)
,maxIteration(30)
,minEigenValue(0.0001f)
,globalMotionRansacThreshold(10)
{}
SolverType solverType;
/**< Variable specifies the iterative refinement strategy. Please consider citing @cite Senst2013 when
* using ST_BILINEAR.
*/
SupportRegionType supportRegionType;
/**< Variable specifies the support region shape extraction or shrinking strategy.
*/
float normSigma0;
/**< &sigma parameter of the shrinked Hampel norm introduced in @cite Senst2012. If
* &sigma = std::numeric_limist<float>::max() the least-square estimator will be used
* instead of the M-estimator. Althoug M-estimator is more robust against outlier in the support
* region the least-square can be fast in computation.
*/
float normSigma1;
/**< &sigma parameter of the shrinked Hampel norm introduced in @cite Senst2012. If
* &sigma = std::numeric_limist<float>::max() the least-square estimator will be used
* instead of the M-estimator. Althoug M-estimator is more robust against outlier in the support
* region the least-square can be fast in computation.
*/
int smallWinSize;
/**< Minimal window size of the support region. This parameter is only used if supportRegionType is SR_CROSS.
*/
int largeWinSize;
/**< Maximal window size of the support region. If supportRegionType is SR_FIXED this gives the exact support
* region size. The speed of the RLOF is related to the applied win sizes. The smaller the window size the lower is the runtime,
* but the more sensitive to noise is the method.
*/
int crossSegmentationThreshold;
/**< Color similarity threshold used by cross-based segmentation following @cite Senst2014 .
* (Only used if supportRegionType is SR_CROSS). With the cross-bassed segmentation
* motion boundaries can be computed more accurately.
*/
int maxLevel;
/**< Maximal number of pyramid level used. The large this value is the more likely it is
* to obtain accurate solutions for long-range motions. The runtime is linear related to
* this parameter.
*/
bool useInitialFlow;
/**< Use next point list as initial values. A good intialization can imporve the algortihm
* accuracy and reduce the runtime by a faster convergence of the iteration refinement.
*/
bool useIlluminationModel;
/**< Use the Gennert and Negahdaripour illumination model instead of the intensity brigthness
* constraint. (proposed in @cite Senst2016 ) This model is defined as follow:
* \f[ I(\mathbf{x},t) + m \cdot I(\mathbf{x},t) + c = I(\mathbf{x},t+1) \f]
* and contains with m and c a multiplicative and additive term which makes the estimate
* more robust against illumination changes. The computational complexity is increased by
* enabling the illumination model.
*/
bool useGlobalMotionPrior;
/**< Use global motion prior initialisation has been introduced in @cite Senst2016 . It
* allows to be more accurate for long-range motion. The computational complexity is
* slightly increased by enabling the global motion prior initialisation.
*/
int maxIteration;
/**< Number of maximal iterations used for the iterative refinement. Lower values can
* reduce the runtime but also the accuracy.
*/
float minEigenValue;
/**< Threshold for the minimal eigenvalue of the gradient matrix defines when to abort the
* iterative refinement.
*/
float globalMotionRansacThreshold;
/**< To apply the global motion prior motion vectors will be computed on a regulary sampled which
* are the basis for Homography estimation using RANSAC. The reprojection threshold is based on
* n-th percentil (given by this value [0 ... 100]) of the motion vectors magnitude.
* See @cite Senst2016 for more details.
*/
//! @brief Enable M-estimator or disable and use least-square estimator.
/** Enables M-estimator by setting sigma parameters to (3.2, 7.0). Disabling M-estimator can reduce
* runtime, while enabling can improve the accuracy.
* @param val If true M-estimator is used. If false least-square estimator is used.
* @see setNormSigma0, setNormSigma1
*/
CV_WRAP void setUseMEstimator(bool val);
CV_WRAP void setSolverType(SolverType val);
CV_WRAP SolverType getSolverType() const;
CV_WRAP void setSupportRegionType(SupportRegionType val);
CV_WRAP SupportRegionType getSupportRegionType() const;
CV_WRAP void setNormSigma0(float val);
CV_WRAP float getNormSigma0() const;
CV_WRAP void setNormSigma1(float val);
CV_WRAP float getNormSigma1() const;
CV_WRAP void setSmallWinSize(int val);
CV_WRAP int getSmallWinSize() const;
CV_WRAP void setLargeWinSize(int val);
CV_WRAP int getLargeWinSize() const;
CV_WRAP void setCrossSegmentationThreshold(int val);
CV_WRAP int getCrossSegmentationThreshold() const;
CV_WRAP void setMaxLevel(int val);
CV_WRAP int getMaxLevel() const;
CV_WRAP void setUseInitialFlow(bool val);
CV_WRAP bool getUseInitialFlow() const;
CV_WRAP void setUseIlluminationModel(bool val);
CV_WRAP bool getUseIlluminationModel() const;
CV_WRAP void setUseGlobalMotionPrior(bool val);
CV_WRAP bool getUseGlobalMotionPrior() const;
CV_WRAP void setMaxIteration(int val);
CV_WRAP int getMaxIteration() const;
CV_WRAP void setMinEigenValue(float val);
CV_WRAP float getMinEigenValue() const;
CV_WRAP void setGlobalMotionRansacThreshold(float val);
CV_WRAP float getGlobalMotionRansacThreshold() const;
//! @brief Creates instance of optflow::RLOFOpticalFlowParameter
CV_WRAP static Ptr<RLOFOpticalFlowParameter> create();
};
/** @brief Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation
* scheme.
*
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
*
* The sparse-to-dense interpolation scheme allows for fast computation of dense optical flow using RLOF (see @cite Geistert2016).
* For this scheme the following steps are applied:
* -# motion vector seeded at a regular sampled grid are computed. The sparsity of this grid can be configured with setGridStep
* -# (optinally) errornous motion vectors are filter based on the forward backward confidence. The threshold can be configured
* with setForwardBackward. The filter is only applied if the threshold >0 but than the runtime is doubled due to the estimation
* of the backward flow.
* -# Vector field interpolation is applied to the motion vector set to obtain a dense vector field.
*
* For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
* Parameters have been described in @cite Senst2012 @cite Senst2013 @cite Senst2014 and @cite Senst2016.
*
* @note If the grid size is set to (1,1) and the forward backward threshold <= 0 than pixelwise dense optical flow field is
* computed by RLOF without using interpolation.
*
* @note Note that in output, if no correspondences are found between \a I0 and \a I1, the \a flow is set to 0.
* @see optflow::calcOpticalFlowDenseRLOF(), optflow::RLOFOpticalFlowParameter
*/
class CV_EXPORTS_W DenseRLOFOpticalFlow : public DenseOpticalFlow
{
public:
//! @brief Configuration of the RLOF alogrithm.
/**
@see optflow::RLOFOpticalFlowParameter, getRLOFOpticalFlowParameter
*/
CV_WRAP virtual void setRLOFOpticalFlowParameter(Ptr<RLOFOpticalFlowParameter> val) = 0;
/** @copybrief setRLOFOpticalFlowParameter
@see optflow::RLOFOpticalFlowParameter, setRLOFOpticalFlowParameter
*/
CV_WRAP virtual Ptr<RLOFOpticalFlowParameter> getRLOFOpticalFlowParameter() const = 0;
//! @brief Threshold for the forward backward confidence check
/**For each grid point \f$ \mathbf{x} \f$ a motion vector \f$ d_{I0,I1}(\mathbf{x}) \f$ is computed.
* If the forward backward error \f[ EP_{FB} = || d_{I0,I1} + d_{I1,I0} || \f]
* is larger than threshold given by this function then the motion vector will not be used by the following
* vector field interpolation. \f$ d_{I1,I0} \f$ denotes the backward flow. Note, the forward backward test
* will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
* @see getForwardBackward, setGridStep
*/
CV_WRAP virtual void setForwardBackward(float val) = 0;
/** @copybrief setForwardBackward
@see setForwardBackward
*/
CV_WRAP virtual float getForwardBackward() const = 0;
//! @brief Size of the grid to spawn the motion vectors.
/** For each grid point a motion vector is computed. Some motion vectors will be removed due to the forwatd backward
* threshold (if set >0). The rest will be the base of the vector field interpolation.
* @see getForwardBackward, setGridStep
*/
CV_WRAP virtual Size getGridStep() const = 0;
/** @copybrief getGridStep
* @see getGridStep
*/
CV_WRAP virtual void setGridStep(Size val) = 0;
//! @brief Interpolation used to compute the dense optical flow.
/** Two interpolation algorithms are supported
* - **INTERP_GEO** applies the fast geodesic interpolation, see @cite Geistert2016.
* - **INTERP_EPIC_RESIDUAL** applies the edge-preserving interpolation, see @cite Revaud2015,Geistert2016.
* @see ximgproc::EdgeAwareInterpolator, getInterpolation
*/
CV_WRAP virtual void setInterpolation(InterpolationType val) = 0;
/** @copybrief setInterpolation
* @see ximgproc::EdgeAwareInterpolator, setInterpolation
*/
CV_WRAP virtual InterpolationType getInterpolation() const = 0;
//! @brief see ximgproc::EdgeAwareInterpolator() K value.
/** K is a number of nearest-neighbor matches considered, when fitting a locally affine
* model. Usually it should be around 128. However, lower values would make the interpolation noticeably faster.
* @see ximgproc::EdgeAwareInterpolator, setEPICK
*/
CV_WRAP virtual int getEPICK() const = 0;
/** @copybrief getEPICK
* @see ximgproc::EdgeAwareInterpolator, getEPICK
*/
CV_WRAP virtual void setEPICK(int val) = 0;
//! @brief see ximgproc::EdgeAwareInterpolator() sigma value.
/** Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
* fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
* output flow.
* @see ximgproc::EdgeAwareInterpolator, setEPICSigma
*/
CV_WRAP virtual float getEPICSigma() const = 0;
/** @copybrief getEPICSigma
* @see ximgproc::EdgeAwareInterpolator, getEPICSigma
*/
CV_WRAP virtual void setEPICSigma(float val) = 0;
//! @brief see ximgproc::EdgeAwareInterpolator() lambda value.
/** Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
* should be in the range of 0 to 1000.
* @see ximgproc::EdgeAwareInterpolator, setEPICSigma
*/
CV_WRAP virtual float getEPICLambda() const = 0;
/** @copybrief getEPICLambda
* @see ximgproc::EdgeAwareInterpolator, getEPICLambda
*/
CV_WRAP virtual void setEPICLambda(float val) = 0;
//! @brief see ximgproc::EdgeAwareInterpolator().
/** Sets the respective fastGlobalSmootherFilter() parameter.
* @see ximgproc::EdgeAwareInterpolator, setFgsLambda
*/
CV_WRAP virtual float getFgsLambda() const = 0;
/** @copybrief getFgsLambda
* @see ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, getFgsLambda
*/
CV_WRAP virtual void setFgsLambda(float val) = 0;
//! @brief see ximgproc::EdgeAwareInterpolator().
/** Sets the respective fastGlobalSmootherFilter() parameter.
* @see ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, setFgsSigma
*/
CV_WRAP virtual float getFgsSigma() const = 0;
/** @copybrief getFgsSigma
* @see ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, getFgsSigma
*/
CV_WRAP virtual void setFgsSigma(float val) = 0;
//! @brief enables ximgproc::fastGlobalSmootherFilter
/**
* @see getUsePostProc
*/
CV_WRAP virtual void setUsePostProc(bool val) = 0;
/** @copybrief setUsePostProc
* @see ximgproc::fastGlobalSmootherFilter, setUsePostProc
*/
CV_WRAP virtual bool getUsePostProc() const = 0;
//! @brief enables VariationalRefinement
/**
* @see getUseVariationalRefinement
*/
CV_WRAP virtual void setUseVariationalRefinement(bool val) = 0;
/** @copybrief setUseVariationalRefinement
* @see ximgproc::fastGlobalSmootherFilter, setUsePostProc
*/
CV_WRAP virtual bool getUseVariationalRefinement() const = 0;
//! @brief Parameter to tune the approximate size of the superpixel used for oversegmentation.
/**
* @see cv::ximgproc::createSuperpixelSLIC, cv::ximgproc::RICInterpolator
*/
CV_WRAP virtual void setRICSPSize(int val) = 0;
/** @copybrief setRICSPSize
* @see setRICSPSize
*/
CV_WRAP virtual int getRICSPSize() const = 0;
/** @brief Parameter to choose superpixel algorithm variant to use:
* - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
* - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
* - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
* @see cv::ximgproc::createSuperpixelSLIC, cv::ximgproc::RICInterpolator
*/
CV_WRAP virtual void setRICSLICType(int val) = 0;
/** @copybrief setRICSLICType
* @see setRICSLICType
*/
CV_WRAP virtual int getRICSLICType() const = 0;
//! @brief Creates instance of optflow::DenseRLOFOpticalFlow
/**
* @param rlofParam see optflow::RLOFOpticalFlowParameter
* @param forwardBackwardThreshold see setForwardBackward
* @param gridStep see setGridStep
* @param interp_type see setInterpolation
* @param epicK see setEPICK
* @param epicSigma see setEPICSigma
* @param epicLambda see setEPICLambda
* @param ricSPSize see setRICSPSize
* @param ricSLICType see setRICSLICType
* @param use_post_proc see setUsePostProc
* @param fgsLambda see setFgsLambda
* @param fgsSigma see setFgsSigma
* @param use_variational_refinement see setUseVariationalRefinement
*/
CV_WRAP static Ptr<DenseRLOFOpticalFlow> create(
Ptr<RLOFOpticalFlowParameter> rlofParam = Ptr<RLOFOpticalFlowParameter>(),
float forwardBackwardThreshold = 1.f,
Size gridStep = Size(6, 6),
InterpolationType interp_type = InterpolationType::INTERP_EPIC,
int epicK = 128,
float epicSigma = 0.05f,
float epicLambda = 999.0f,
int ricSPSize = 15,
int ricSLICType = 100,
bool use_post_proc = true,
float fgsLambda = 500.0f,
float fgsSigma = 1.5f,
bool use_variational_refinement = false);
};
/** @brief Class used for calculation sparse optical flow and feature tracking with robust local optical flow (RLOF) algorithms.
*
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
*
* For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
* Parameters have been described in @cite Senst2012, @cite Senst2013, @cite Senst2014 and @cite Senst2016.
*
* @note SIMD parallelization is only available when compiling with SSE4.1.
* @see optflow::calcOpticalFlowSparseRLOF(), optflow::RLOFOpticalFlowParameter
*/
class CV_EXPORTS_W SparseRLOFOpticalFlow : public SparseOpticalFlow
{
public:
/** @copydoc DenseRLOFOpticalFlow::setRLOFOpticalFlowParameter
*/
CV_WRAP virtual void setRLOFOpticalFlowParameter(Ptr<RLOFOpticalFlowParameter> val) = 0;
/** @copybrief setRLOFOpticalFlowParameter
* @see setRLOFOpticalFlowParameter
*/
CV_WRAP virtual Ptr<RLOFOpticalFlowParameter> getRLOFOpticalFlowParameter() const = 0;
//! @brief Threshold for the forward backward confidence check
/** For each feature point a motion vector \f$ d_{I0,I1}(\mathbf{x}) \f$ is computed.
* If the forward backward error \f[ EP_{FB} = || d_{I0,I1} + d_{I1,I0} || \f]
* is larger than threshold given by this function then the status will not be used by the following
* vector field interpolation. \f$ d_{I1,I0} \f$ denotes the backward flow. Note, the forward backward test
* will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
* @see setForwardBackward
*/
CV_WRAP virtual void setForwardBackward(float val) = 0;
/** @copybrief setForwardBackward
* @see setForwardBackward
*/
CV_WRAP virtual float getForwardBackward() const = 0;
//! @brief Creates instance of SparseRLOFOpticalFlow
/**
* @param rlofParam see setRLOFOpticalFlowParameter
* @param forwardBackwardThreshold see setForwardBackward
*/
CV_WRAP static Ptr<SparseRLOFOpticalFlow> create(
Ptr<RLOFOpticalFlowParameter> rlofParam = Ptr<RLOFOpticalFlowParameter>(),
float forwardBackwardThreshold = 1.f);
};
/** @brief Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation scheme.
*
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
*
* The sparse-to-dense interpolation scheme allows for fast computation of dense optical flow using RLOF (see @cite Geistert2016).
* For this scheme the following steps are applied:
* -# motion vector seeded at a regular sampled grid are computed. The sparsity of this grid can be configured with setGridStep
* -# (optinally) errornous motion vectors are filter based on the forward backward confidence. The threshold can be configured
* with setForwardBackward. The filter is only applied if the threshold >0 but than the runtime is doubled due to the estimation
* of the backward flow.
* -# Vector field interpolation is applied to the motion vector set to obtain a dense vector field.
*
* @param I0 first 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
* = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
* @param I1 second 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
* = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
* @param flow computed flow image that has the same size as I0 and type CV_32FC2.
* @param rlofParam see optflow::RLOFOpticalFlowParameter
* @param forwardBackwardThreshold Threshold for the forward backward confidence check.
* For each grid point \f$ \mathbf{x} \f$ a motion vector \f$ d_{I0,I1}(\mathbf{x}) \f$ is computed.
* If the forward backward error \f[ EP_{FB} = || d_{I0,I1} + d_{I1,I0} || \f]
* is larger than threshold given by this function then the motion vector will not be used by the following
* vector field interpolation. \f$ d_{I1,I0} \f$ denotes the backward flow. Note, the forward backward test
* will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
* @param gridStep Size of the grid to spawn the motion vectors. For each grid point a motion vector is computed.
* Some motion vectors will be removed due to the forwatd backward threshold (if set >0). The rest will be the
* base of the vector field interpolation.
* @param interp_type interpolation method used to compute the dense optical flow. Two interpolation algorithms are
* supported:
* - **INTERP_GEO** applies the fast geodesic interpolation, see @cite Geistert2016.
* - **INTERP_EPIC_RESIDUAL** applies the edge-preserving interpolation, see @cite Revaud2015,Geistert2016.
* @param epicK see ximgproc::EdgeAwareInterpolator sets the respective parameter.
* @param epicSigma see ximgproc::EdgeAwareInterpolator sets the respective parameter.
* @param epicLambda see ximgproc::EdgeAwareInterpolator sets the respective parameter.
* @param ricSPSize see ximgproc::RICInterpolator sets the respective parameter.
* @param ricSLICType see ximgproc::RICInterpolator sets the respective parameter.
* @param use_post_proc enables ximgproc::fastGlobalSmootherFilter() parameter.
* @param fgsLambda sets the respective ximgproc::fastGlobalSmootherFilter() parameter.
* @param fgsSigma sets the respective ximgproc::fastGlobalSmootherFilter() parameter.
* @param use_variational_refinement enables VariationalRefinement
*
* Parameters have been described in @cite Senst2012, @cite Senst2013, @cite Senst2014, @cite Senst2016.
* For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
* @note If the grid size is set to (1,1) and the forward backward threshold <= 0 that the dense optical flow field is purely
* computed with the RLOF.
*
* @note SIMD parallelization is only available when compiling with SSE4.1.
* @note Note that in output, if no correspondences are found between \a I0 and \a I1, the \a flow is set to 0.
*
* @sa optflow::DenseRLOFOpticalFlow, optflow::RLOFOpticalFlowParameter
*/
CV_EXPORTS_W void calcOpticalFlowDenseRLOF(InputArray I0, InputArray I1, InputOutputArray flow,
Ptr<RLOFOpticalFlowParameter> rlofParam = Ptr<RLOFOpticalFlowParameter>(),
float forwardBackwardThreshold = 0, Size gridStep = Size(6, 6),
InterpolationType interp_type = InterpolationType::INTERP_EPIC,
int epicK = 128, float epicSigma = 0.05f, float epicLambda = 100.f,
int ricSPSize = 15, int ricSLICType = 100,
bool use_post_proc = true, float fgsLambda = 500.0f, float fgsSigma = 1.5f,
bool use_variational_refinement = false);
/** @brief Calculates fast optical flow for a sparse feature set using the robust local optical flow (RLOF) similar
* to optflow::calcOpticalFlowPyrLK().
*
* The RLOF is a fast local optical flow approach described in @cite Senst2012 @cite Senst2013 @cite Senst2014
* and @cite Senst2016 similar to the pyramidal iterative Lucas-Kanade method as
* proposed by @cite Bouguet00. More details and experiments can be found in the following thesis @cite Senst2019.
* The implementation is derived from optflow::calcOpticalFlowPyrLK().
*
* @param prevImg first 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
* = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
* @param nextImg second 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
* = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
* @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be single-precision
* floating-point numbers.
* @param nextPts output vector of 2D points (with single-precision floating-point coordinates) containing the calculated
* new positions of input features in the second image; when optflow::RLOFOpticalFlowParameter::useInitialFlow variable is true the vector must
* have the same size as in the input and contain the initialization point correspondences.
* @param status output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the
* corresponding features has passed the forward backward check.
* @param err output vector of errors; each element of the vector is set to the forward backward error for the corresponding feature.
* @param rlofParam see optflow::RLOFOpticalFlowParameter
* @param forwardBackwardThreshold Threshold for the forward backward confidence check. If forewardBackwardThreshold <=0 the forward
*
* @note SIMD parallelization is only available when compiling with SSE4.1.
*
* Parameters have been described in @cite Senst2012, @cite Senst2013, @cite Senst2014 and @cite Senst2016.
* For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
*/
CV_EXPORTS_W void calcOpticalFlowSparseRLOF(InputArray prevImg, InputArray nextImg,
InputArray prevPts, InputOutputArray nextPts,
OutputArray status, OutputArray err,
Ptr<RLOFOpticalFlowParameter> rlofParam = Ptr<RLOFOpticalFlowParameter>(),
float forwardBackwardThreshold = 0);
//! Additional interface to the Dense RLOF algorithm - optflow::calcOpticalFlowDenseRLOF()
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_DenseRLOF();
//! Additional interface to the Sparse RLOF algorithm - optflow::calcOpticalFlowSparseRLOF()
CV_EXPORTS_W Ptr<SparseOpticalFlow> createOptFlow_SparseRLOF();
//! @}
} // namespace
} // namespace
#endif