358 lines
14 KiB
C++
358 lines
14 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#ifndef OPENCV_STITCHING_STITCHER_HPP
|
||
|
#define OPENCV_STITCHING_STITCHER_HPP
|
||
|
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/features2d.hpp"
|
||
|
#include "opencv2/stitching/warpers.hpp"
|
||
|
#include "opencv2/stitching/detail/matchers.hpp"
|
||
|
#include "opencv2/stitching/detail/motion_estimators.hpp"
|
||
|
#include "opencv2/stitching/detail/exposure_compensate.hpp"
|
||
|
#include "opencv2/stitching/detail/seam_finders.hpp"
|
||
|
#include "opencv2/stitching/detail/blenders.hpp"
|
||
|
#include "opencv2/stitching/detail/camera.hpp"
|
||
|
|
||
|
|
||
|
#if defined(Status)
|
||
|
# warning Detected X11 'Status' macro definition, it can cause build conflicts. Please, include this header before any X11 headers.
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**
|
||
|
@defgroup stitching Images stitching
|
||
|
|
||
|
This figure illustrates the stitching module pipeline implemented in the Stitcher class. Using that
|
||
|
class it's possible to configure/remove some steps, i.e. adjust the stitching pipeline according to
|
||
|
the particular needs. All building blocks from the pipeline are available in the detail namespace,
|
||
|
one can combine and use them separately.
|
||
|
|
||
|
The implemented stitching pipeline is very similar to the one proposed in @cite BL07 .
|
||
|
|
||
|
![stitching pipeline](StitchingPipeline.jpg)
|
||
|
|
||
|
Camera models
|
||
|
-------------
|
||
|
|
||
|
There are currently 2 camera models implemented in stitching pipeline.
|
||
|
|
||
|
- _Homography model_ expecting perspective transformations between images
|
||
|
implemented in @ref cv::detail::BestOf2NearestMatcher cv::detail::HomographyBasedEstimator
|
||
|
cv::detail::BundleAdjusterReproj cv::detail::BundleAdjusterRay
|
||
|
- _Affine model_ expecting affine transformation with 6 DOF or 4 DOF implemented in
|
||
|
@ref cv::detail::AffineBestOf2NearestMatcher cv::detail::AffineBasedEstimator
|
||
|
cv::detail::BundleAdjusterAffine cv::detail::BundleAdjusterAffinePartial cv::AffineWarper
|
||
|
|
||
|
Homography model is useful for creating photo panoramas captured by camera,
|
||
|
while affine-based model can be used to stitch scans and object captured by
|
||
|
specialized devices. Use @ref cv::Stitcher::create to get preconfigured pipeline for one
|
||
|
of those models.
|
||
|
|
||
|
@note
|
||
|
Certain detailed settings of @ref cv::Stitcher might not make sense. Especially
|
||
|
you should not mix classes implementing affine model and classes implementing
|
||
|
Homography model, as they work with different transformations.
|
||
|
|
||
|
@{
|
||
|
@defgroup stitching_match Features Finding and Images Matching
|
||
|
@defgroup stitching_rotation Rotation Estimation
|
||
|
@defgroup stitching_autocalib Autocalibration
|
||
|
@defgroup stitching_warp Images Warping
|
||
|
@defgroup stitching_seam Seam Estimation
|
||
|
@defgroup stitching_exposure Exposure Compensation
|
||
|
@defgroup stitching_blend Image Blenders
|
||
|
@}
|
||
|
*/
|
||
|
|
||
|
namespace cv {
|
||
|
|
||
|
//! @addtogroup stitching
|
||
|
//! @{
|
||
|
|
||
|
/** @example samples/cpp/stitching.cpp
|
||
|
A basic example on image stitching
|
||
|
*/
|
||
|
|
||
|
/** @example samples/python/stitching.py
|
||
|
A basic example on image stitching in Python.
|
||
|
*/
|
||
|
|
||
|
/** @example samples/cpp/stitching_detailed.cpp
|
||
|
A detailed example on image stitching
|
||
|
*/
|
||
|
|
||
|
/** @brief High level image stitcher.
|
||
|
|
||
|
It's possible to use this class without being aware of the entire stitching pipeline. However, to
|
||
|
be able to achieve higher stitching stability and quality of the final images at least being
|
||
|
familiar with the theory is recommended.
|
||
|
|
||
|
@note
|
||
|
- A basic example on image stitching can be found at
|
||
|
opencv_source_code/samples/cpp/stitching.cpp
|
||
|
- A basic example on image stitching in Python can be found at
|
||
|
opencv_source_code/samples/python/stitching.py
|
||
|
- A detailed example on image stitching can be found at
|
||
|
opencv_source_code/samples/cpp/stitching_detailed.cpp
|
||
|
*/
|
||
|
class CV_EXPORTS_W Stitcher
|
||
|
{
|
||
|
public:
|
||
|
/**
|
||
|
* When setting a resolution for stitching, this values is a placeholder
|
||
|
* for preserving the original resolution.
|
||
|
*/
|
||
|
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900/*MSVS 2015*/)
|
||
|
static constexpr double ORIG_RESOL = -1.0;
|
||
|
#else
|
||
|
// support MSVS 2013
|
||
|
static const double ORIG_RESOL; // Initialized in stitcher.cpp
|
||
|
#endif
|
||
|
|
||
|
enum Status
|
||
|
{
|
||
|
OK = 0,
|
||
|
ERR_NEED_MORE_IMGS = 1,
|
||
|
ERR_HOMOGRAPHY_EST_FAIL = 2,
|
||
|
ERR_CAMERA_PARAMS_ADJUST_FAIL = 3
|
||
|
};
|
||
|
|
||
|
enum Mode
|
||
|
{
|
||
|
/** Mode for creating photo panoramas. Expects images under perspective
|
||
|
transformation and projects resulting pano to sphere.
|
||
|
|
||
|
@sa detail::BestOf2NearestMatcher SphericalWarper
|
||
|
*/
|
||
|
PANORAMA = 0,
|
||
|
/** Mode for composing scans. Expects images under affine transformation does
|
||
|
not compensate exposure by default.
|
||
|
|
||
|
@sa detail::AffineBestOf2NearestMatcher AffineWarper
|
||
|
*/
|
||
|
SCANS = 1,
|
||
|
|
||
|
};
|
||
|
|
||
|
/** @brief Creates a Stitcher configured in one of the stitching modes.
|
||
|
|
||
|
@param mode Scenario for stitcher operation. This is usually determined by source of images
|
||
|
to stitch and their transformation. Default parameters will be chosen for operation in given
|
||
|
scenario.
|
||
|
@return Stitcher class instance.
|
||
|
*/
|
||
|
CV_WRAP static Ptr<Stitcher> create(Mode mode = Stitcher::PANORAMA);
|
||
|
|
||
|
CV_WRAP double registrationResol() const { return registr_resol_; }
|
||
|
CV_WRAP void setRegistrationResol(double resol_mpx) { registr_resol_ = resol_mpx; }
|
||
|
|
||
|
CV_WRAP double seamEstimationResol() const { return seam_est_resol_; }
|
||
|
CV_WRAP void setSeamEstimationResol(double resol_mpx) { seam_est_resol_ = resol_mpx; }
|
||
|
|
||
|
CV_WRAP double compositingResol() const { return compose_resol_; }
|
||
|
CV_WRAP void setCompositingResol(double resol_mpx) { compose_resol_ = resol_mpx; }
|
||
|
|
||
|
CV_WRAP double panoConfidenceThresh() const { return conf_thresh_; }
|
||
|
CV_WRAP void setPanoConfidenceThresh(double conf_thresh) { conf_thresh_ = conf_thresh; }
|
||
|
|
||
|
CV_WRAP bool waveCorrection() const { return do_wave_correct_; }
|
||
|
CV_WRAP void setWaveCorrection(bool flag) { do_wave_correct_ = flag; }
|
||
|
|
||
|
CV_WRAP InterpolationFlags interpolationFlags() const { return interp_flags_; }
|
||
|
CV_WRAP void setInterpolationFlags(InterpolationFlags interp_flags) { interp_flags_ = interp_flags; }
|
||
|
|
||
|
detail::WaveCorrectKind waveCorrectKind() const { return wave_correct_kind_; }
|
||
|
void setWaveCorrectKind(detail::WaveCorrectKind kind) { wave_correct_kind_ = kind; }
|
||
|
|
||
|
Ptr<Feature2D> featuresFinder() { return features_finder_; }
|
||
|
const Ptr<Feature2D> featuresFinder() const { return features_finder_; }
|
||
|
void setFeaturesFinder(Ptr<Feature2D> features_finder)
|
||
|
{ features_finder_ = features_finder; }
|
||
|
|
||
|
Ptr<detail::FeaturesMatcher> featuresMatcher() { return features_matcher_; }
|
||
|
const Ptr<detail::FeaturesMatcher> featuresMatcher() const { return features_matcher_; }
|
||
|
void setFeaturesMatcher(Ptr<detail::FeaturesMatcher> features_matcher)
|
||
|
{ features_matcher_ = features_matcher; }
|
||
|
|
||
|
const cv::UMat& matchingMask() const { return matching_mask_; }
|
||
|
void setMatchingMask(const cv::UMat &mask)
|
||
|
{
|
||
|
CV_Assert(mask.type() == CV_8U && mask.cols == mask.rows);
|
||
|
matching_mask_ = mask.clone();
|
||
|
}
|
||
|
|
||
|
Ptr<detail::BundleAdjusterBase> bundleAdjuster() { return bundle_adjuster_; }
|
||
|
const Ptr<detail::BundleAdjusterBase> bundleAdjuster() const { return bundle_adjuster_; }
|
||
|
void setBundleAdjuster(Ptr<detail::BundleAdjusterBase> bundle_adjuster)
|
||
|
{ bundle_adjuster_ = bundle_adjuster; }
|
||
|
|
||
|
Ptr<detail::Estimator> estimator() { return estimator_; }
|
||
|
const Ptr<detail::Estimator> estimator() const { return estimator_; }
|
||
|
void setEstimator(Ptr<detail::Estimator> estimator)
|
||
|
{ estimator_ = estimator; }
|
||
|
|
||
|
Ptr<WarperCreator> warper() { return warper_; }
|
||
|
const Ptr<WarperCreator> warper() const { return warper_; }
|
||
|
void setWarper(Ptr<WarperCreator> creator) { warper_ = creator; }
|
||
|
|
||
|
Ptr<detail::ExposureCompensator> exposureCompensator() { return exposure_comp_; }
|
||
|
const Ptr<detail::ExposureCompensator> exposureCompensator() const { return exposure_comp_; }
|
||
|
void setExposureCompensator(Ptr<detail::ExposureCompensator> exposure_comp)
|
||
|
{ exposure_comp_ = exposure_comp; }
|
||
|
|
||
|
Ptr<detail::SeamFinder> seamFinder() { return seam_finder_; }
|
||
|
const Ptr<detail::SeamFinder> seamFinder() const { return seam_finder_; }
|
||
|
void setSeamFinder(Ptr<detail::SeamFinder> seam_finder) { seam_finder_ = seam_finder; }
|
||
|
|
||
|
Ptr<detail::Blender> blender() { return blender_; }
|
||
|
const Ptr<detail::Blender> blender() const { return blender_; }
|
||
|
void setBlender(Ptr<detail::Blender> b) { blender_ = b; }
|
||
|
|
||
|
/** @brief These functions try to match the given images and to estimate rotations of each camera.
|
||
|
|
||
|
@note Use the functions only if you're aware of the stitching pipeline, otherwise use
|
||
|
Stitcher::stitch.
|
||
|
|
||
|
@param images Input images.
|
||
|
@param masks Masks for each input image specifying where to look for keypoints (optional).
|
||
|
@return Status code.
|
||
|
*/
|
||
|
CV_WRAP Status estimateTransform(InputArrayOfArrays images, InputArrayOfArrays masks = noArray());
|
||
|
|
||
|
/** @brief These function restors camera rotation and camera intrinsics of each camera
|
||
|
* that can be got with @ref Stitcher::cameras call
|
||
|
|
||
|
@param images Input images.
|
||
|
@param cameras Estimated rotation of cameras for each of the input images.
|
||
|
@param component Indices (0-based) of images constituting the final panorama (optional).
|
||
|
@return Status code.
|
||
|
*/
|
||
|
Status setTransform(InputArrayOfArrays images,
|
||
|
const std::vector<detail::CameraParams> &cameras,
|
||
|
const std::vector<int> &component);
|
||
|
/** @overload */
|
||
|
Status setTransform(InputArrayOfArrays images, const std::vector<detail::CameraParams> &cameras);
|
||
|
|
||
|
/** @overload */
|
||
|
CV_WRAP Status composePanorama(OutputArray pano);
|
||
|
/** @brief These functions try to compose the given images (or images stored internally from the other function
|
||
|
calls) into the final pano under the assumption that the image transformations were estimated
|
||
|
before.
|
||
|
|
||
|
@note Use the functions only if you're aware of the stitching pipeline, otherwise use
|
||
|
Stitcher::stitch.
|
||
|
|
||
|
@param images Input images.
|
||
|
@param pano Final pano.
|
||
|
@return Status code.
|
||
|
*/
|
||
|
CV_WRAP Status composePanorama(InputArrayOfArrays images, OutputArray pano);
|
||
|
|
||
|
/** @overload */
|
||
|
CV_WRAP Status stitch(InputArrayOfArrays images, OutputArray pano);
|
||
|
/** @brief These functions try to stitch the given images.
|
||
|
|
||
|
@param images Input images.
|
||
|
@param masks Masks for each input image specifying where to look for keypoints (optional).
|
||
|
@param pano Final pano.
|
||
|
@return Status code.
|
||
|
*/
|
||
|
CV_WRAP Status stitch(InputArrayOfArrays images, InputArrayOfArrays masks, OutputArray pano);
|
||
|
|
||
|
std::vector<int> component() const { return indices_; }
|
||
|
std::vector<detail::CameraParams> cameras() const { return cameras_; }
|
||
|
CV_WRAP double workScale() const { return work_scale_; }
|
||
|
UMat resultMask() const { return result_mask_; }
|
||
|
|
||
|
private:
|
||
|
Status matchImages();
|
||
|
Status estimateCameraParams();
|
||
|
|
||
|
double registr_resol_;
|
||
|
double seam_est_resol_;
|
||
|
double compose_resol_;
|
||
|
double conf_thresh_;
|
||
|
InterpolationFlags interp_flags_;
|
||
|
Ptr<Feature2D> features_finder_;
|
||
|
Ptr<detail::FeaturesMatcher> features_matcher_;
|
||
|
cv::UMat matching_mask_;
|
||
|
Ptr<detail::BundleAdjusterBase> bundle_adjuster_;
|
||
|
Ptr<detail::Estimator> estimator_;
|
||
|
bool do_wave_correct_;
|
||
|
detail::WaveCorrectKind wave_correct_kind_;
|
||
|
Ptr<WarperCreator> warper_;
|
||
|
Ptr<detail::ExposureCompensator> exposure_comp_;
|
||
|
Ptr<detail::SeamFinder> seam_finder_;
|
||
|
Ptr<detail::Blender> blender_;
|
||
|
|
||
|
std::vector<cv::UMat> imgs_;
|
||
|
std::vector<cv::UMat> masks_;
|
||
|
std::vector<cv::Size> full_img_sizes_;
|
||
|
std::vector<detail::ImageFeatures> features_;
|
||
|
std::vector<detail::MatchesInfo> pairwise_matches_;
|
||
|
std::vector<cv::UMat> seam_est_imgs_;
|
||
|
std::vector<int> indices_;
|
||
|
std::vector<detail::CameraParams> cameras_;
|
||
|
UMat result_mask_;
|
||
|
double work_scale_;
|
||
|
double seam_scale_;
|
||
|
double seam_work_aspect_;
|
||
|
double warped_image_scale_;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* @deprecated use Stitcher::create
|
||
|
*/
|
||
|
CV_DEPRECATED Ptr<Stitcher> createStitcher(bool try_use_gpu = false);
|
||
|
|
||
|
/**
|
||
|
* @deprecated use Stitcher::create
|
||
|
*/
|
||
|
CV_DEPRECATED Ptr<Stitcher> createStitcherScans(bool try_use_gpu = false);
|
||
|
|
||
|
//! @} stitching
|
||
|
|
||
|
} // namespace cv
|
||
|
|
||
|
#endif // OPENCV_STITCHING_STITCHER_HPP
|