fast-yolo4/3rdparty/opencv/inc/opencv2/stitching/detail/matchers.hpp

254 lines
9.5 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_STITCHING_MATCHERS_HPP
#define OPENCV_STITCHING_MATCHERS_HPP
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/opencv_modules.hpp"
namespace cv {
namespace detail {
//! @addtogroup stitching_match
//! @{
/** @brief Structure containing image keypoints and descriptors. */
struct CV_EXPORTS_W_SIMPLE ImageFeatures
{
CV_PROP_RW int img_idx;
CV_PROP_RW Size img_size;
CV_PROP_RW std::vector<KeyPoint> keypoints;
CV_PROP_RW UMat descriptors;
CV_WRAP std::vector<KeyPoint> getKeypoints() { return keypoints; };
};
/** @brief
@param featuresFinder
@param images
@param features
@param masks
*/
CV_EXPORTS_W void computeImageFeatures(
const Ptr<Feature2D> &featuresFinder,
InputArrayOfArrays images,
CV_OUT std::vector<ImageFeatures> &features,
InputArrayOfArrays masks = noArray());
/** @brief
@param featuresFinder
@param image
@param features
@param mask
*/
CV_EXPORTS_AS(computeImageFeatures2) void computeImageFeatures(
const Ptr<Feature2D> &featuresFinder,
InputArray image,
CV_OUT ImageFeatures &features,
InputArray mask = noArray());
/** @brief Structure containing information about matches between two images.
It's assumed that there is a transformation between those images. Transformation may be
homography or affine transformation based on selected matcher.
@sa detail::FeaturesMatcher
*/
struct CV_EXPORTS_W_SIMPLE MatchesInfo
{
MatchesInfo();
MatchesInfo(const MatchesInfo &other);
MatchesInfo& operator =(const MatchesInfo &other);
CV_PROP_RW int src_img_idx;
CV_PROP_RW int dst_img_idx; //!< Images indices (optional)
std::vector<DMatch> matches;
std::vector<uchar> inliers_mask; //!< Geometrically consistent matches mask
CV_PROP_RW int num_inliers; //!< Number of geometrically consistent matches
CV_PROP_RW Mat H; //!< Estimated transformation
CV_PROP_RW double confidence; //!< Confidence two images are from the same panorama
CV_WRAP std::vector<DMatch> getMatches() { return matches; };
CV_WRAP std::vector<uchar> getInliers() { return inliers_mask; };
};
/** @brief Feature matchers base class. */
class CV_EXPORTS_W FeaturesMatcher
{
public:
CV_WRAP virtual ~FeaturesMatcher() {}
/** @overload
@param features1 First image features
@param features2 Second image features
@param matches_info Found matches
*/
CV_WRAP_AS(apply) void operator ()(const ImageFeatures &features1, const ImageFeatures &features2,
CV_OUT MatchesInfo& matches_info) { match(features1, features2, matches_info); }
/** @brief Performs images matching.
@param features Features of the source images
@param pairwise_matches Found pairwise matches
@param mask Mask indicating which image pairs must be matched
The function is parallelized with the TBB library.
@sa detail::MatchesInfo
*/
CV_WRAP_AS(apply2) void operator ()(const std::vector<ImageFeatures> &features, CV_OUT std::vector<MatchesInfo> &pairwise_matches,
const cv::UMat &mask = cv::UMat());
/** @return True, if it's possible to use the same matcher instance in parallel, false otherwise
*/
CV_WRAP bool isThreadSafe() const { return is_thread_safe_; }
/** @brief Frees unused memory allocated before if there is any.
*/
CV_WRAP virtual void collectGarbage() {}
protected:
FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}
/** @brief This method must implement matching logic in order to make the wrappers
detail::FeaturesMatcher::operator()_ work.
@param features1 first image features
@param features2 second image features
@param matches_info found matches
*/
virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,
MatchesInfo& matches_info) = 0;
bool is_thread_safe_;
};
/** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the
ratio between descriptor distances is greater than the threshold match_conf
@sa detail::FeaturesMatcher
*/
class CV_EXPORTS_W BestOf2NearestMatcher : public FeaturesMatcher
{
public:
/** @brief Constructs a "best of 2 nearest" matcher.
@param try_use_gpu Should try to use GPU or not
@param match_conf Match distances ration threshold
@param num_matches_thresh1 Minimum number of matches required for the 2D projective transform
estimation used in the inliers classification step
@param num_matches_thresh2 Minimum number of matches required for the 2D projective transform
re-estimation on inliers
*/
CV_WRAP BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
int num_matches_thresh2 = 6);
CV_WRAP void collectGarbage() CV_OVERRIDE;
CV_WRAP static Ptr<BestOf2NearestMatcher> create(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
int num_matches_thresh2 = 6);
protected:
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) CV_OVERRIDE;
int num_matches_thresh1_;
int num_matches_thresh2_;
Ptr<FeaturesMatcher> impl_;
};
class CV_EXPORTS_W BestOf2NearestRangeMatcher : public BestOf2NearestMatcher
{
public:
CV_WRAP BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f,
int num_matches_thresh1 = 6, int num_matches_thresh2 = 6);
void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
const cv::UMat &mask = cv::UMat());
protected:
int range_width_;
};
/** @brief Features matcher similar to cv::detail::BestOf2NearestMatcher which
finds two best matches for each feature and leaves the best one only if the
ratio between descriptor distances is greater than the threshold match_conf.
Unlike cv::detail::BestOf2NearestMatcher this matcher uses affine
transformation (affine transformation estimate will be placed in matches_info).
@sa cv::detail::FeaturesMatcher cv::detail::BestOf2NearestMatcher
*/
class CV_EXPORTS_W AffineBestOf2NearestMatcher : public BestOf2NearestMatcher
{
public:
/** @brief Constructs a "best of 2 nearest" matcher that expects affine transformation
between images
@param full_affine whether to use full affine transformation with 6 degress of freedom or reduced
transformation with 4 degrees of freedom using only rotation, translation and uniform scaling
@param try_use_gpu Should try to use GPU or not
@param match_conf Match distances ration threshold
@param num_matches_thresh1 Minimum number of matches required for the 2D affine transform
estimation used in the inliers classification step
@sa cv::estimateAffine2D cv::estimateAffinePartial2D
*/
CV_WRAP AffineBestOf2NearestMatcher(bool full_affine = false, bool try_use_gpu = false,
float match_conf = 0.3f, int num_matches_thresh1 = 6) :
BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh1),
full_affine_(full_affine) {}
protected:
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) CV_OVERRIDE;
bool full_affine_;
};
//! @} stitching_match
} // namespace detail
} // namespace cv
#endif // OPENCV_STITCHING_MATCHERS_HPP