fast-yolo4/3rdparty/opencv/inc/opencv2/tracking/feature.hpp

422 lines
14 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_FEATURE_HPP__
#define __OPENCV_FEATURE_HPP__
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <string>
#include <time.h>
/*
* TODO This implementation is based on apps/traincascade/
* TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.)
*/
namespace cv {
namespace detail {
inline namespace tracking {
//! @addtogroup tracking_detail
//! @{
inline namespace contrib_feature {
#define FEATURES "features"
#define CC_FEATURES FEATURES
#define CC_FEATURE_PARAMS "featureParams"
#define CC_MAX_CAT_COUNT "maxCatCount"
#define CC_FEATURE_SIZE "featSize"
#define CC_NUM_FEATURES "numFeat"
#define CC_ISINTEGRAL "isIntegral"
#define CC_RECTS "rects"
#define CC_TILTED "tilted"
#define CC_RECT "rect"
#define LBPF_NAME "lbpFeatureParams"
#define HOGF_NAME "HOGFeatureParams"
#define HFP_NAME "haarFeatureParams"
#define CV_HAAR_FEATURE_MAX 3
#define N_BINS 9
#define N_CELLS 4
#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) \
/* (x, y) */ \
(p0) = (rect).x + (step) * (rect).y; \
/* (x + w, y) */ \
(p1) = (rect).x + (rect).width + (step) * (rect).y; \
/* (x + w, y) */ \
(p2) = (rect).x + (step) * ((rect).y + (rect).height); \
/* (x + w, y + h) */ \
(p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height);
#define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) \
/* (x, y) */ \
(p0) = (rect).x + (step) * (rect).y; \
/* (x - h, y + h) */ \
(p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\
/* (x + w, y + w) */ \
(p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width); \
/* (x + w - h, y + w + h) */ \
(p3) = (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height);
float calcNormFactor( const Mat& sum, const Mat& sqSum );
template<class Feature>
void _writeFeatures( const std::vector<Feature> features, FileStorage &fs, const Mat& featureMap )
{
fs << FEATURES << "[";
const Mat_<int>& featureMap_ = (const Mat_<int>&) featureMap;
for ( int fi = 0; fi < featureMap.cols; fi++ )
if( featureMap_( 0, fi ) >= 0 )
{
fs << "{";
features[fi].write( fs );
fs << "}";
}
fs << "]";
}
class CvParams
{
public:
CvParams();
virtual ~CvParams()
{
}
// from|to file
virtual void write( FileStorage &fs ) const = 0;
virtual bool read( const FileNode &node ) = 0;
// from|to screen
virtual void printDefaults() const;
virtual void printAttrs() const;
virtual bool scanAttr( const std::string prmName, const std::string val );
std::string name;
};
class CvFeatureParams : public CvParams
{
public:
enum FeatureType
{
HAAR = 0,
LBP = 1,
HOG = 2
};
CvFeatureParams();
virtual void init( const CvFeatureParams& fp );
virtual void write( FileStorage &fs ) const CV_OVERRIDE;
virtual bool read( const FileNode &node ) CV_OVERRIDE;
static Ptr<CvFeatureParams> create(CvFeatureParams::FeatureType featureType);
int maxCatCount; // 0 in case of numerical features
int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features
int numFeatures;
};
class CvFeatureEvaluator
{
public:
virtual ~CvFeatureEvaluator()
{
}
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
virtual void setImage( const Mat& img, uchar clsLabel, int idx );
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const = 0;
virtual float operator()( int featureIdx, int sampleIdx ) = 0;
static Ptr<CvFeatureEvaluator> create(CvFeatureParams::FeatureType type);
int getNumFeatures() const
{
return numFeatures;
}
int getMaxCatCount() const
{
return featureParams->maxCatCount;
}
int getFeatureSize() const
{
return featureParams->featSize;
}
const Mat& getCls() const
{
return cls;
}
float getCls( int si ) const
{
return cls.at<float>( si, 0 );
}
protected:
virtual void generateFeatures() = 0;
int npos, nneg;
int numFeatures;
Size winSize;
CvFeatureParams *featureParams;
Mat cls;
};
class CvHaarFeatureParams : public CvFeatureParams
{
public:
CvHaarFeatureParams();
virtual void init( const CvFeatureParams& fp ) CV_OVERRIDE;
virtual void write( FileStorage &fs ) const CV_OVERRIDE;
virtual bool read( const FileNode &node ) CV_OVERRIDE;
virtual void printDefaults() const CV_OVERRIDE;
virtual void printAttrs() const CV_OVERRIDE;
virtual bool scanAttr( const std::string prm, const std::string val ) CV_OVERRIDE;
bool isIntegral;
};
class CvHaarEvaluator : public CvFeatureEvaluator
{
public:
class FeatureHaar
{
public:
FeatureHaar( Size patchSize );
bool eval( const Mat& image, Rect ROI, float* result ) const;
int getNumAreas();
const std::vector<float>& getWeights() const;
const std::vector<Rect>& getAreas() const;
void write( FileStorage ) const
{
}
;
float getInitMean() const;
float getInitSigma() const;
private:
int m_type;
int m_numAreas;
std::vector<float> m_weights;
float m_initMean;
float m_initSigma;
void generateRandomFeature( Size imageSize );
float getSum( const Mat& image, Rect imgROI ) const;
std::vector<Rect> m_areas; // areas within the patch over which to compute the feature
cv::Size m_initSize; // size of the patch used during training
cv::Size m_curSize; // size of the patches currently under investigation
float m_scaleFactorHeight; // scaling factor in vertical direction
float m_scaleFactorWidth; // scaling factor in horizontal direction
std::vector<Rect> m_scaleAreas; // areas after scaling
std::vector<float> m_scaleWeights; // weights after scaling
};
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE;
virtual void setImage( const Mat& img, uchar clsLabel = 0, int idx = 1 ) CV_OVERRIDE;
virtual float operator()( int featureIdx, int sampleIdx ) CV_OVERRIDE;
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE;
void writeFeature( FileStorage &fs ) const; // for old file format
const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const;
inline CvHaarEvaluator::FeatureHaar& getFeatures( int idx )
{
return features[idx];
}
void setWinSize( Size patchSize );
Size setWinSize() const;
virtual void generateFeatures() CV_OVERRIDE;
/**
* TODO new method
* \brief Overload the original generateFeatures in order to limit the number of the features
* @param numFeatures Number of the features
*/
virtual void generateFeatures( int numFeatures );
protected:
bool isIntegral;
/* TODO Added from MIL implementation */
Mat _ii_img;
void compute_integral( const cv::Mat & img, std::vector<cv::Mat_<float> > & ii_imgs )
{
Mat ii_img;
integral( img, ii_img, CV_32F );
split( ii_img, ii_imgs );
}
std::vector<FeatureHaar> features;
Mat sum; /* sum images (each row represents image) */
};
struct CvHOGFeatureParams : public CvFeatureParams
{
CvHOGFeatureParams();
};
class CvHOGEvaluator : public CvFeatureEvaluator
{
public:
virtual ~CvHOGEvaluator()
{
}
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE;
virtual void setImage( const Mat& img, uchar clsLabel, int idx ) CV_OVERRIDE;
virtual float operator()( int varIdx, int sampleIdx ) CV_OVERRIDE;
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE;
protected:
virtual void generateFeatures() CV_OVERRIDE;
virtual void integralHistogram( const Mat &img, std::vector<Mat> &histogram, Mat &norm, int nbins ) const;
class Feature
{
public:
Feature();
Feature( int offset, int x, int y, int cellW, int cellH );
float calc( const std::vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const;
void write( FileStorage &fs ) const;
void write( FileStorage &fs, int varIdx ) const;
Rect rect[N_CELLS]; //cells
struct
{
int p0, p1, p2, p3;
} fastRect[N_CELLS];
};
std::vector<Feature> features;
Mat normSum; //for nomalization calculation (L1 or L2)
std::vector<Mat> hist;
};
inline float CvHOGEvaluator::operator()( int varIdx, int sampleIdx )
{
int featureIdx = varIdx / ( N_BINS * N_CELLS );
int componentIdx = varIdx % ( N_BINS * N_CELLS );
//return features[featureIdx].calc( hist, sampleIdx, componentIdx);
return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx );
}
inline float CvHOGEvaluator::Feature::calc( const std::vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const
{
float normFactor;
float res;
int binIdx = featComponent % N_BINS;
int cellIdx = featComponent / N_BINS;
const float *phist = _hists[binIdx].ptr<float>( (int) y );
res = phist[fastRect[cellIdx].p0] - phist[fastRect[cellIdx].p1] - phist[fastRect[cellIdx].p2] + phist[fastRect[cellIdx].p3];
const float *pnormSum = _normSum.ptr<float>( (int) y );
normFactor = (float) ( pnormSum[fastRect[0].p0] - pnormSum[fastRect[1].p1] - pnormSum[fastRect[2].p2] + pnormSum[fastRect[3].p3] );
res = ( res > 0.001f ) ? ( res / ( normFactor + 0.001f ) ) : 0.f; //for cutting negative values, which apper due to floating precision
return res;
}
struct CvLBPFeatureParams : CvFeatureParams
{
CvLBPFeatureParams();
};
class CvLBPEvaluator : public CvFeatureEvaluator
{
public:
virtual ~CvLBPEvaluator() CV_OVERRIDE
{
}
virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE;
virtual void setImage( const Mat& img, uchar clsLabel, int idx ) CV_OVERRIDE;
virtual float operator()( int featureIdx, int sampleIdx ) CV_OVERRIDE
{
return (float) features[featureIdx].calc( sum, sampleIdx );
}
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE;
protected:
virtual void generateFeatures() CV_OVERRIDE;
class Feature
{
public:
Feature();
Feature( int offset, int x, int y, int _block_w, int _block_h );
uchar calc( const Mat& _sum, size_t y ) const;
void write( FileStorage &fs ) const;
Rect rect;
int p[16];
};
std::vector<Feature> features;
Mat sum;
};
inline uchar CvLBPEvaluator::Feature::calc( const Mat &_sum, size_t y ) const
{
const int* psum = _sum.ptr<int>( (int) y );
int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]];
return (uchar) ( ( psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0 ) | // 0
( psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0 ) | // 1
( psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0 ) | // 2
( psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0 ) | // 5
( psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0 ) | // 8
( psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0 ) | // 7
( psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0 ) | // 6
( psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0 ) ); // 3
}
} // namespace
//! @}
}}} // namespace cv
#endif