1093 lines
46 KiB
C++
1093 lines
46 KiB
C++
|
/*
|
|||
|
By downloading, copying, installing or using the software you agree to this
|
|||
|
license. If you do not agree to this license, do not download, install,
|
|||
|
copy or use the software.
|
|||
|
|
|||
|
License Agreement
|
|||
|
For Open Source Computer Vision Library
|
|||
|
(3-clause BSD License)
|
|||
|
|
|||
|
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|||
|
Third party copyrights are property of their respective owners.
|
|||
|
|
|||
|
Redistribution and use in source and binary forms, with or without modification,
|
|||
|
are permitted provided that the following conditions are met:
|
|||
|
|
|||
|
* Redistributions of source code must retain the above copyright notice,
|
|||
|
this list of conditions and the following disclaimer.
|
|||
|
|
|||
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|||
|
this list of conditions and the following disclaimer in the documentation
|
|||
|
and/or other materials provided with the distribution.
|
|||
|
|
|||
|
* Neither the names of the copyright holders nor the names of the contributors
|
|||
|
may be used to endorse or promote products derived from this software
|
|||
|
without specific prior written permission.
|
|||
|
|
|||
|
This software is provided by the copyright holders and contributors "as is" and
|
|||
|
any express or implied warranties, including, but not limited to, the implied
|
|||
|
warranties of merchantability and fitness for a particular purpose are
|
|||
|
disclaimed. In no event shall copyright holders or contributors be liable for
|
|||
|
any direct, indirect, incidental, special, exemplary, or consequential damages
|
|||
|
(including, but not limited to, procurement of substitute goods or services;
|
|||
|
loss of use, data, or profits; or business interruption) however caused
|
|||
|
and on any theory of liability, whether in contract, strict liability,
|
|||
|
or tort (including negligence or otherwise) arising in any way out of
|
|||
|
the use of this software, even if advised of the possibility of such damage.
|
|||
|
*/
|
|||
|
|
|||
|
#ifndef __OPENCV_XFEATURES2D_HPP__
|
|||
|
#define __OPENCV_XFEATURES2D_HPP__
|
|||
|
|
|||
|
#include "opencv2/features2d.hpp"
|
|||
|
#include "opencv2/xfeatures2d/nonfree.hpp"
|
|||
|
|
|||
|
/** @defgroup xfeatures2d Extra 2D Features Framework
|
|||
|
@{
|
|||
|
@defgroup xfeatures2d_experiment Experimental 2D Features Algorithms
|
|||
|
|
|||
|
This section describes experimental algorithms for 2d feature detection.
|
|||
|
|
|||
|
@defgroup xfeatures2d_nonfree Non-free 2D Features Algorithms
|
|||
|
|
|||
|
This section describes two popular algorithms for 2d feature detection, SIFT and SURF, that are
|
|||
|
known to be patented. You need to set the OPENCV_ENABLE_NONFREE option in cmake to use those. Use them at your own risk.
|
|||
|
|
|||
|
@defgroup xfeatures2d_match Experimental 2D Features Matching Algorithm
|
|||
|
|
|||
|
This section describes the following matching strategies:
|
|||
|
- GMS: Grid-based Motion Statistics, @cite Bian2017gms
|
|||
|
- LOGOS: Local geometric support for high-outlier spatial verification, @cite Lowry2018LOGOSLG
|
|||
|
|
|||
|
@}
|
|||
|
*/
|
|||
|
|
|||
|
namespace cv
|
|||
|
{
|
|||
|
namespace xfeatures2d
|
|||
|
{
|
|||
|
|
|||
|
//! @addtogroup xfeatures2d_experiment
|
|||
|
//! @{
|
|||
|
|
|||
|
/** @brief Class implementing the FREAK (*Fast Retina Keypoint*) keypoint descriptor, described in @cite AOV12 .
|
|||
|
|
|||
|
The algorithm propose a novel keypoint descriptor inspired by the human visual system and more
|
|||
|
precisely the retina, coined Fast Retina Key- point (FREAK). A cascade of binary strings is
|
|||
|
computed by efficiently comparing image intensities over a retinal sampling pattern. FREAKs are in
|
|||
|
general faster to compute with lower memory load and also more robust than SIFT, SURF or BRISK.
|
|||
|
They are competitive alternatives to existing keypoints in particular for embedded applications.
|
|||
|
|
|||
|
@note
|
|||
|
- An example on how to use the FREAK descriptor can be found at
|
|||
|
opencv_source_code/samples/cpp/freak_demo.cpp
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W FREAK : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
|
|||
|
static const int NB_SCALES = 64;
|
|||
|
static const int NB_PAIRS = 512;
|
|||
|
static const int NB_ORIENPAIRS = 45;
|
|||
|
|
|||
|
/**
|
|||
|
@param orientationNormalized Enable orientation normalization.
|
|||
|
@param scaleNormalized Enable scale normalization.
|
|||
|
@param patternScale Scaling of the description pattern.
|
|||
|
@param nOctaves Number of octaves covered by the detected keypoints.
|
|||
|
@param selectedPairs (Optional) user defined selected pairs indexes,
|
|||
|
*/
|
|||
|
CV_WRAP static Ptr<FREAK> create(bool orientationNormalized = true,
|
|||
|
bool scaleNormalized = true,
|
|||
|
float patternScale = 22.0f,
|
|||
|
int nOctaves = 4,
|
|||
|
const std::vector<int>& selectedPairs = std::vector<int>());
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
/** @brief The class implements the keypoint detector introduced by @cite Agrawal08, synonym of StarDetector. :
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W StarDetector : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
//! the full constructor
|
|||
|
CV_WRAP static Ptr<StarDetector> create(int maxSize=45, int responseThreshold=30,
|
|||
|
int lineThresholdProjected=10,
|
|||
|
int lineThresholdBinarized=8,
|
|||
|
int suppressNonmaxSize=5);
|
|||
|
};
|
|||
|
|
|||
|
/*
|
|||
|
* BRIEF Descriptor
|
|||
|
*/
|
|||
|
|
|||
|
/** @brief Class for computing BRIEF descriptors described in @cite calon2010 .
|
|||
|
|
|||
|
@param bytes legth of the descriptor in bytes, valid values are: 16, 32 (default) or 64 .
|
|||
|
@param use_orientation sample patterns using keypoints orientation, disabled by default.
|
|||
|
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W BriefDescriptorExtractor : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
CV_WRAP static Ptr<BriefDescriptorExtractor> create( int bytes = 32, bool use_orientation = false );
|
|||
|
};
|
|||
|
|
|||
|
/** @brief Class implementing the locally uniform comparison image descriptor, described in @cite LUCID
|
|||
|
|
|||
|
An image descriptor that can be computed very fast, while being
|
|||
|
about as robust as, for example, SURF or BRIEF.
|
|||
|
|
|||
|
@note It requires a color image as input.
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W LUCID : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
/**
|
|||
|
* @param lucid_kernel kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
|
|||
|
* @param blur_kernel kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
|
|||
|
*/
|
|||
|
CV_WRAP static Ptr<LUCID> create(const int lucid_kernel = 1, const int blur_kernel = 2);
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
* LATCH Descriptor
|
|||
|
*/
|
|||
|
|
|||
|
/** latch Class for computing the LATCH descriptor.
|
|||
|
If you find this code useful, please add a reference to the following paper in your work:
|
|||
|
Gil Levi and Tal Hassner, "LATCH: Learned Arrangements of Three Patch Codes", arXiv preprint arXiv:1501.03719, 15 Jan. 2015
|
|||
|
|
|||
|
LATCH is a binary descriptor based on learned comparisons of triplets of image patches.
|
|||
|
|
|||
|
* bytes is the size of the descriptor - can be 64, 32, 16, 8, 4, 2 or 1
|
|||
|
* rotationInvariance - whether or not the descriptor should compansate for orientation changes.
|
|||
|
* half_ssd_size - the size of half of the mini-patches size. For example, if we would like to compare triplets of patches of size 7x7x
|
|||
|
then the half_ssd_size should be (7-1)/2 = 3.
|
|||
|
* sigma - sigma value for GaussianBlur smoothing of the source image. Source image will be used without smoothing in case sigma value is 0.
|
|||
|
|
|||
|
Note: the descriptor can be coupled with any keypoint extractor. The only demand is that if you use set rotationInvariance = True then
|
|||
|
you will have to use an extractor which estimates the patch orientation (in degrees). Examples for such extractors are ORB and SIFT.
|
|||
|
|
|||
|
Note: a complete example can be found under /samples/cpp/tutorial_code/xfeatures2D/latch_match.cpp
|
|||
|
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W LATCH : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
CV_WRAP static Ptr<LATCH> create(int bytes = 32, bool rotationInvariance = true, int half_ssd_size = 3, double sigma = 2.0);
|
|||
|
};
|
|||
|
|
|||
|
/** @brief Class implementing BEBLID (Boosted Efficient Binary Local Image Descriptor),
|
|||
|
* described in @cite Suarez2020BEBLID .
|
|||
|
|
|||
|
BEBLID \cite Suarez2020BEBLID is a efficient binary descriptor learned with boosting.
|
|||
|
It is able to describe keypoints from any detector just by changing the scale_factor parameter.
|
|||
|
In several benchmarks it has proved to largely improve other binary descriptors like ORB or
|
|||
|
BRISK with the same efficiency. BEBLID describes using the difference of mean gray values in
|
|||
|
different regions of the image around the KeyPoint, the descriptor is specifically optimized for
|
|||
|
image matching and patch retrieval addressing the asymmetries of these problems.
|
|||
|
|
|||
|
If you find this code useful, please add a reference to the following paper:
|
|||
|
<BLOCKQUOTE> Iago Suárez, Ghesn Sfeir, José M. Buenaposada, and Luis Baumela.
|
|||
|
BEBLID: Boosted efficient binary local image descriptor.
|
|||
|
Pattern Recognition Letters, 133:366–372, 2020. </BLOCKQUOTE>
|
|||
|
|
|||
|
The descriptor was trained using 1 million of randomly sampled pairs of patches
|
|||
|
(20% positives and 80% negatives) from the Liberty split of the UBC datasets
|
|||
|
\cite winder2007learning as described in the paper @cite Suarez2020BEBLID.
|
|||
|
You can check in the [AKAZE example](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/features2D/AKAZE_match.cpp)
|
|||
|
how well BEBLID works. Detecting 10000 keypoints with ORB and describing with BEBLID obtains
|
|||
|
561 inliers (75%) whereas describing with ORB obtains only 493 inliers (63%).
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W BEBLID : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
/**
|
|||
|
* @brief Descriptor number of bits, each bit is a boosting weak-learner.
|
|||
|
* The user can choose between 512 or 256 bits.
|
|||
|
*/
|
|||
|
enum BeblidSize
|
|||
|
{
|
|||
|
SIZE_512_BITS = 100, SIZE_256_BITS = 101,
|
|||
|
};
|
|||
|
/** @brief Creates the BEBLID descriptor.
|
|||
|
@param scale_factor Adjust the sampling window around detected keypoints:
|
|||
|
- <b> 1.00f </b> should be the scale for ORB keypoints
|
|||
|
- <b> 6.75f </b> should be the scale for SIFT detected keypoints
|
|||
|
- <b> 6.25f </b> is default and fits for KAZE, SURF detected keypoints
|
|||
|
- <b> 5.00f </b> should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints
|
|||
|
@param n_bits Determine the number of bits in the descriptor. Should be either
|
|||
|
BEBLID::SIZE_512_BITS or BEBLID::SIZE_256_BITS.
|
|||
|
*/
|
|||
|
CV_WRAP static Ptr<BEBLID> create(float scale_factor, int n_bits = BEBLID::SIZE_512_BITS);
|
|||
|
};
|
|||
|
|
|||
|
/** @brief Class implementing DAISY descriptor, described in @cite Tola10
|
|||
|
|
|||
|
@param radius radius of the descriptor at the initial scale
|
|||
|
@param q_radius amount of radial range division quantity
|
|||
|
@param q_theta amount of angular range division quantity
|
|||
|
@param q_hist amount of gradient orientations range division quantity
|
|||
|
@param norm choose descriptors normalization type, where
|
|||
|
DAISY::NRM_NONE will not do any normalization (default),
|
|||
|
DAISY::NRM_PARTIAL mean that histograms are normalized independently for L2 norm equal to 1.0,
|
|||
|
DAISY::NRM_FULL mean that descriptors are normalized for L2 norm equal to 1.0,
|
|||
|
DAISY::NRM_SIFT mean that descriptors are normalized for L2 norm equal to 1.0 but no individual one is bigger than 0.154 as in SIFT
|
|||
|
@param H optional 3x3 homography matrix used to warp the grid of daisy but sampling keypoints remains unwarped on image
|
|||
|
@param interpolation switch to disable interpolation for speed improvement at minor quality loss
|
|||
|
@param use_orientation sample patterns using keypoints orientation, disabled by default.
|
|||
|
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W DAISY : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
enum NormalizationType
|
|||
|
{
|
|||
|
NRM_NONE = 100, NRM_PARTIAL = 101, NRM_FULL = 102, NRM_SIFT = 103,
|
|||
|
};
|
|||
|
CV_WRAP static Ptr<DAISY> create( float radius = 15, int q_radius = 3, int q_theta = 8,
|
|||
|
int q_hist = 8, DAISY::NormalizationType norm = DAISY::NRM_NONE, InputArray H = noArray(),
|
|||
|
bool interpolation = true, bool use_orientation = false );
|
|||
|
|
|||
|
/** @overload
|
|||
|
* @param image image to extract descriptors
|
|||
|
* @param keypoints of interest within image
|
|||
|
* @param descriptors resulted descriptors array
|
|||
|
*/
|
|||
|
virtual void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) CV_OVERRIDE = 0;
|
|||
|
|
|||
|
virtual void compute( InputArrayOfArrays images,
|
|||
|
std::vector<std::vector<KeyPoint> >& keypoints,
|
|||
|
OutputArrayOfArrays descriptors ) CV_OVERRIDE;
|
|||
|
|
|||
|
/** @overload
|
|||
|
* @param image image to extract descriptors
|
|||
|
* @param roi region of interest within image
|
|||
|
* @param descriptors resulted descriptors array for roi image pixels
|
|||
|
*/
|
|||
|
virtual void compute( InputArray image, Rect roi, OutputArray descriptors ) = 0;
|
|||
|
|
|||
|
/**@overload
|
|||
|
* @param image image to extract descriptors
|
|||
|
* @param descriptors resulted descriptors array for all image pixels
|
|||
|
*/
|
|||
|
virtual void compute( InputArray image, OutputArray descriptors ) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @param y position y on image
|
|||
|
* @param x position x on image
|
|||
|
* @param orientation orientation on image (0->360)
|
|||
|
* @param descriptor supplied array for descriptor storage
|
|||
|
*/
|
|||
|
virtual void GetDescriptor( double y, double x, int orientation, float* descriptor ) const = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @param y position y on image
|
|||
|
* @param x position x on image
|
|||
|
* @param orientation orientation on image (0->360)
|
|||
|
* @param descriptor supplied array for descriptor storage
|
|||
|
* @param H homography matrix for warped grid
|
|||
|
*/
|
|||
|
virtual bool GetDescriptor( double y, double x, int orientation, float* descriptor, double* H ) const = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @param y position y on image
|
|||
|
* @param x position x on image
|
|||
|
* @param orientation orientation on image (0->360)
|
|||
|
* @param descriptor supplied array for descriptor storage
|
|||
|
*/
|
|||
|
virtual void GetUnnormalizedDescriptor( double y, double x, int orientation, float* descriptor ) const = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @param y position y on image
|
|||
|
* @param x position x on image
|
|||
|
* @param orientation orientation on image (0->360)
|
|||
|
* @param descriptor supplied array for descriptor storage
|
|||
|
* @param H homography matrix for warped grid
|
|||
|
*/
|
|||
|
virtual bool GetUnnormalizedDescriptor( double y, double x, int orientation, float* descriptor , double *H ) const = 0;
|
|||
|
|
|||
|
};
|
|||
|
|
|||
|
/** @brief Class implementing the MSD (*Maximal Self-Dissimilarity*) keypoint detector, described in @cite Tombari14.
|
|||
|
|
|||
|
The algorithm implements a novel interest point detector stemming from the intuition that image patches
|
|||
|
which are highly dissimilar over a relatively large extent of their surroundings hold the property of
|
|||
|
being repeatable and distinctive. This concept of "contextual self-dissimilarity" reverses the key
|
|||
|
paradigm of recent successful techniques such as the Local Self-Similarity descriptor and the Non-Local
|
|||
|
Means filter, which build upon the presence of similar - rather than dissimilar - patches. Moreover,
|
|||
|
it extends to contextual information the local self-dissimilarity notion embedded in established
|
|||
|
detectors of corner-like interest points, thereby achieving enhanced repeatability, distinctiveness and
|
|||
|
localization accuracy.
|
|||
|
|
|||
|
*/
|
|||
|
|
|||
|
class CV_EXPORTS_W MSDDetector : public Feature2D {
|
|||
|
|
|||
|
public:
|
|||
|
|
|||
|
static Ptr<MSDDetector> create(int m_patch_radius = 3, int m_search_area_radius = 5,
|
|||
|
int m_nms_radius = 5, int m_nms_scale_radius = 0, float m_th_saliency = 250.0f, int m_kNN = 4,
|
|||
|
float m_scale_factor = 1.25f, int m_n_scales = -1, bool m_compute_orientation = false);
|
|||
|
};
|
|||
|
|
|||
|
/** @brief Class implementing VGG (Oxford Visual Geometry Group) descriptor trained end to end
|
|||
|
using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in @cite Simonyan14.
|
|||
|
|
|||
|
@param desc type of descriptor to use, VGG::VGG_120 is default (120 dimensions float)
|
|||
|
Available types are VGG::VGG_120, VGG::VGG_80, VGG::VGG_64, VGG::VGG_48
|
|||
|
@param isigma gaussian kernel value for image blur (default is 1.4f)
|
|||
|
@param img_normalize use image sample intensity normalization (enabled by default)
|
|||
|
@param use_orientation sample patterns using keypoints orientation, enabled by default
|
|||
|
@param scale_factor adjust the sampling window of detected keypoints to 64.0f (VGG sampling window)
|
|||
|
6.25f is default and fits for KAZE, SURF detected keypoints window ratio
|
|||
|
6.75f should be the scale for SIFT detected keypoints window ratio
|
|||
|
5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio
|
|||
|
0.75f should be the scale for ORB keypoints ratio
|
|||
|
|
|||
|
@param dsc_normalize clamp descriptors to 255 and convert to uchar CV_8UC1 (disabled by default)
|
|||
|
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W VGG : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
|
|||
|
CV_WRAP enum
|
|||
|
{
|
|||
|
VGG_120 = 100, VGG_80 = 101, VGG_64 = 102, VGG_48 = 103,
|
|||
|
};
|
|||
|
|
|||
|
CV_WRAP static Ptr<VGG> create( int desc = VGG::VGG_120, float isigma = 1.4f,
|
|||
|
bool img_normalize = true, bool use_scale_orientation = true,
|
|||
|
float scale_factor = 6.25f, bool dsc_normalize = false );
|
|||
|
|
|||
|
CV_WRAP virtual void setSigma(const float isigma) = 0;
|
|||
|
CV_WRAP virtual float getSigma() const = 0;
|
|||
|
|
|||
|
CV_WRAP virtual void setUseNormalizeImage(const bool img_normalize) = 0;
|
|||
|
CV_WRAP virtual bool getUseNormalizeImage() const = 0;
|
|||
|
|
|||
|
CV_WRAP virtual void setUseScaleOrientation(const bool use_scale_orientation) = 0;
|
|||
|
CV_WRAP virtual bool getUseScaleOrientation() const = 0;
|
|||
|
|
|||
|
CV_WRAP virtual void setScaleFactor(const float scale_factor) = 0;
|
|||
|
CV_WRAP virtual float getScaleFactor() const = 0;
|
|||
|
|
|||
|
CV_WRAP virtual void setUseNormalizeDescriptor(const bool dsc_normalize) = 0;
|
|||
|
CV_WRAP virtual bool getUseNormalizeDescriptor() const = 0;
|
|||
|
};
|
|||
|
|
|||
|
/** @brief Class implementing BoostDesc (Learning Image Descriptors with Boosting), described in
|
|||
|
@cite Trzcinski13a and @cite Trzcinski13b.
|
|||
|
|
|||
|
@param desc type of descriptor to use, BoostDesc::BINBOOST_256 is default (256 bit long dimension)
|
|||
|
Available types are: BoostDesc::BGM, BoostDesc::BGM_HARD, BoostDesc::BGM_BILINEAR, BoostDesc::LBGM,
|
|||
|
BoostDesc::BINBOOST_64, BoostDesc::BINBOOST_128, BoostDesc::BINBOOST_256
|
|||
|
@param use_orientation sample patterns using keypoints orientation, enabled by default
|
|||
|
@param scale_factor adjust the sampling window of detected keypoints
|
|||
|
6.25f is default and fits for KAZE, SURF detected keypoints window ratio
|
|||
|
6.75f should be the scale for SIFT detected keypoints window ratio
|
|||
|
5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio
|
|||
|
0.75f should be the scale for ORB keypoints ratio
|
|||
|
1.50f was the default in original implementation
|
|||
|
|
|||
|
@note BGM is the base descriptor where each binary dimension is computed as the output of a single weak learner.
|
|||
|
BGM_HARD and BGM_BILINEAR refers to same BGM but use different type of gradient binning. In the BGM_HARD that
|
|||
|
use ASSIGN_HARD binning type the gradient is assigned to the nearest orientation bin. In the BGM_BILINEAR that use
|
|||
|
ASSIGN_BILINEAR binning type the gradient is assigned to the two neighbouring bins. In the BGM and all other modes that use
|
|||
|
ASSIGN_SOFT binning type the gradient is assigned to 8 nearest bins according to the cosine value between the gradient
|
|||
|
angle and the bin center. LBGM (alias FP-Boost) is the floating point extension where each dimension is computed
|
|||
|
as a linear combination of the weak learner responses. BINBOOST and subvariants are the binary extensions of LBGM
|
|||
|
where each bit is computed as a thresholded linear combination of a set of weak learners.
|
|||
|
BoostDesc header files (boostdesc_*.i) was exported from original binaries with export-boostdesc.py script from
|
|||
|
samples subfolder.
|
|||
|
|
|||
|
*/
|
|||
|
|
|||
|
class CV_EXPORTS_W BoostDesc : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
|
|||
|
CV_WRAP enum
|
|||
|
{
|
|||
|
BGM = 100, BGM_HARD = 101, BGM_BILINEAR = 102, LBGM = 200,
|
|||
|
BINBOOST_64 = 300, BINBOOST_128 = 301, BINBOOST_256 = 302
|
|||
|
};
|
|||
|
|
|||
|
CV_WRAP static Ptr<BoostDesc> create( int desc = BoostDesc::BINBOOST_256,
|
|||
|
bool use_scale_orientation = true, float scale_factor = 6.25f );
|
|||
|
|
|||
|
CV_WRAP virtual void setUseScaleOrientation(const bool use_scale_orientation) = 0;
|
|||
|
CV_WRAP virtual bool getUseScaleOrientation() const = 0;
|
|||
|
|
|||
|
CV_WRAP virtual void setScaleFactor(const float scale_factor) = 0;
|
|||
|
CV_WRAP virtual float getScaleFactor() const = 0;
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
* Position-Color-Texture signatures
|
|||
|
*/
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Class implementing PCT (position-color-texture) signature extraction
|
|||
|
* as described in @cite KrulisLS16.
|
|||
|
* The algorithm is divided to a feature sampler and a clusterizer.
|
|||
|
* Feature sampler produces samples at given set of coordinates.
|
|||
|
* Clusterizer then produces clusters of these samples using k-means algorithm.
|
|||
|
* Resulting set of clusters is the signature of the input image.
|
|||
|
*
|
|||
|
* A signature is an array of SIGNATURE_DIMENSION-dimensional points.
|
|||
|
* Used dimensions are:
|
|||
|
* weight, x, y position; lab color, contrast, entropy.
|
|||
|
* @cite KrulisLS16
|
|||
|
* @cite BeecksUS10
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W PCTSignatures : public Algorithm
|
|||
|
{
|
|||
|
public:
|
|||
|
/**
|
|||
|
* @brief Lp distance function selector.
|
|||
|
*/
|
|||
|
enum DistanceFunction
|
|||
|
{
|
|||
|
L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Point distributions supported by random point generator.
|
|||
|
*/
|
|||
|
enum PointDistribution
|
|||
|
{
|
|||
|
UNIFORM, //!< Generate numbers uniformly.
|
|||
|
REGULAR, //!< Generate points in a regular grid.
|
|||
|
NORMAL //!< Generate points with normal (gaussian) distribution.
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Similarity function selector.
|
|||
|
* @see
|
|||
|
* Christian Beecks, Merih Seran Uysal, Thomas Seidl.
|
|||
|
* Signature quadratic form distance.
|
|||
|
* In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 438-445.
|
|||
|
* ACM, 2010.
|
|||
|
* @cite BeecksUS10
|
|||
|
* @note For selected distance function: \f[ d(c_i, c_j) \f] and parameter: \f[ \alpha \f]
|
|||
|
*/
|
|||
|
enum SimilarityFunction
|
|||
|
{
|
|||
|
MINUS, //!< \f[ -d(c_i, c_j) \f]
|
|||
|
GAUSSIAN, //!< \f[ e^{ -\alpha * d^2(c_i, c_j)} \f]
|
|||
|
HEURISTIC //!< \f[ \frac{1}{\alpha + d(c_i, c_j)} \f]
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Creates PCTSignatures algorithm using sample and seed count.
|
|||
|
* It generates its own sets of sampling points and clusterization seed indexes.
|
|||
|
* @param initSampleCount Number of points used for image sampling.
|
|||
|
* @param initSeedCount Number of initial clusterization seeds.
|
|||
|
* Must be lower or equal to initSampleCount
|
|||
|
* @param pointDistribution Distribution of generated points. Default: UNIFORM.
|
|||
|
* Available: UNIFORM, REGULAR, NORMAL.
|
|||
|
* @return Created algorithm.
|
|||
|
*/
|
|||
|
CV_WRAP static Ptr<PCTSignatures> create(
|
|||
|
const int initSampleCount = 2000,
|
|||
|
const int initSeedCount = 400,
|
|||
|
const int pointDistribution = 0);
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Creates PCTSignatures algorithm using pre-generated sampling points
|
|||
|
* and number of clusterization seeds. It uses the provided
|
|||
|
* sampling points and generates its own clusterization seed indexes.
|
|||
|
* @param initSamplingPoints Sampling points used in image sampling.
|
|||
|
* @param initSeedCount Number of initial clusterization seeds.
|
|||
|
* Must be lower or equal to initSamplingPoints.size().
|
|||
|
* @return Created algorithm.
|
|||
|
*/
|
|||
|
CV_WRAP static Ptr<PCTSignatures> create(
|
|||
|
const std::vector<Point2f>& initSamplingPoints,
|
|||
|
const int initSeedCount);
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Creates PCTSignatures algorithm using pre-generated sampling points
|
|||
|
* and clusterization seeds indexes.
|
|||
|
* @param initSamplingPoints Sampling points used in image sampling.
|
|||
|
* @param initClusterSeedIndexes Indexes of initial clusterization seeds.
|
|||
|
* Its size must be lower or equal to initSamplingPoints.size().
|
|||
|
* @return Created algorithm.
|
|||
|
*/
|
|||
|
CV_WRAP static Ptr<PCTSignatures> create(
|
|||
|
const std::vector<Point2f>& initSamplingPoints,
|
|||
|
const std::vector<int>& initClusterSeedIndexes);
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Computes signature of given image.
|
|||
|
* @param image Input image of CV_8U type.
|
|||
|
* @param signature Output computed signature.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void computeSignature(
|
|||
|
InputArray image,
|
|||
|
OutputArray signature) const = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Computes signatures for multiple images in parallel.
|
|||
|
* @param images Vector of input images of CV_8U type.
|
|||
|
* @param signatures Vector of computed signatures.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void computeSignatures(
|
|||
|
const std::vector<Mat>& images,
|
|||
|
std::vector<Mat>& signatures) const = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Draws signature in the source image and outputs the result.
|
|||
|
* Signatures are visualized as a circle
|
|||
|
* with radius based on signature weight
|
|||
|
* and color based on signature color.
|
|||
|
* Contrast and entropy are not visualized.
|
|||
|
* @param source Source image.
|
|||
|
* @param signature Image signature.
|
|||
|
* @param result Output result.
|
|||
|
* @param radiusToShorterSideRatio Determines maximal radius of signature in the output image.
|
|||
|
* @param borderThickness Border thickness of the visualized signature.
|
|||
|
*/
|
|||
|
CV_WRAP static void drawSignature(
|
|||
|
InputArray source,
|
|||
|
InputArray signature,
|
|||
|
OutputArray result,
|
|||
|
float radiusToShorterSideRatio = 1.0 / 8,
|
|||
|
int borderThickness = 1);
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Generates initial sampling points according to selected point distribution.
|
|||
|
* @param initPoints Output vector where the generated points will be saved.
|
|||
|
* @param count Number of points to generate.
|
|||
|
* @param pointDistribution Point distribution selector.
|
|||
|
* Available: UNIFORM, REGULAR, NORMAL.
|
|||
|
* @note Generated coordinates are in range [0..1)
|
|||
|
*/
|
|||
|
CV_WRAP static void generateInitPoints(
|
|||
|
std::vector<Point2f>& initPoints,
|
|||
|
const int count,
|
|||
|
int pointDistribution);
|
|||
|
|
|||
|
|
|||
|
/**** sampler ****/
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Number of initial samples taken from the image.
|
|||
|
*/
|
|||
|
CV_WRAP virtual int getSampleCount() const = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Color resolution of the greyscale bitmap represented in allocated bits
|
|||
|
* (i.e., value 4 means that 16 shades of grey are used).
|
|||
|
* The greyscale bitmap is used for computing contrast and entropy values.
|
|||
|
*/
|
|||
|
CV_WRAP virtual int getGrayscaleBits() const = 0;
|
|||
|
/**
|
|||
|
* @brief Color resolution of the greyscale bitmap represented in allocated bits
|
|||
|
* (i.e., value 4 means that 16 shades of grey are used).
|
|||
|
* The greyscale bitmap is used for computing contrast and entropy values.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setGrayscaleBits(int grayscaleBits) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Size of the texture sampling window used to compute contrast and entropy
|
|||
|
* (center of the window is always in the pixel selected by x,y coordinates
|
|||
|
* of the corresponding feature sample).
|
|||
|
*/
|
|||
|
CV_WRAP virtual int getWindowRadius() const = 0;
|
|||
|
/**
|
|||
|
* @brief Size of the texture sampling window used to compute contrast and entropy
|
|||
|
* (center of the window is always in the pixel selected by x,y coordinates
|
|||
|
* of the corresponding feature sample).
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWindowRadius(int radius) = 0;
|
|||
|
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getWeightX() const = 0;
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeightX(float weight) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getWeightY() const = 0;
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeightY(float weight) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getWeightL() const = 0;
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeightL(float weight) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getWeightA() const = 0;
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeightA(float weight) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getWeightB() const = 0;
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeightB(float weight) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getWeightContrast() const = 0;
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeightContrast(float weight) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getWeightEntropy() const = 0;
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
|
|||
|
* (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeightEntropy(float weight) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Initial samples taken from the image.
|
|||
|
* These sampled features become the input for clustering.
|
|||
|
*/
|
|||
|
CV_WRAP virtual std::vector<Point2f> getSamplingPoints() const = 0;
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
|
|||
|
* @param idx ID of the weight
|
|||
|
* @param value Value of the weight
|
|||
|
* @note
|
|||
|
* WEIGHT_IDX = 0;
|
|||
|
* X_IDX = 1;
|
|||
|
* Y_IDX = 2;
|
|||
|
* L_IDX = 3;
|
|||
|
* A_IDX = 4;
|
|||
|
* B_IDX = 5;
|
|||
|
* CONTRAST_IDX = 6;
|
|||
|
* ENTROPY_IDX = 7;
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeight(int idx, float value) = 0;
|
|||
|
/**
|
|||
|
* @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
|
|||
|
* @param weights Values of all weights.
|
|||
|
* @note
|
|||
|
* WEIGHT_IDX = 0;
|
|||
|
* X_IDX = 1;
|
|||
|
* Y_IDX = 2;
|
|||
|
* L_IDX = 3;
|
|||
|
* A_IDX = 4;
|
|||
|
* B_IDX = 5;
|
|||
|
* CONTRAST_IDX = 6;
|
|||
|
* ENTROPY_IDX = 7;
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setWeights(const std::vector<float>& weights) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Translations of the individual axes of the feature space.
|
|||
|
* @param idx ID of the translation
|
|||
|
* @param value Value of the translation
|
|||
|
* @note
|
|||
|
* WEIGHT_IDX = 0;
|
|||
|
* X_IDX = 1;
|
|||
|
* Y_IDX = 2;
|
|||
|
* L_IDX = 3;
|
|||
|
* A_IDX = 4;
|
|||
|
* B_IDX = 5;
|
|||
|
* CONTRAST_IDX = 6;
|
|||
|
* ENTROPY_IDX = 7;
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setTranslation(int idx, float value) = 0;
|
|||
|
/**
|
|||
|
* @brief Translations of the individual axes of the feature space.
|
|||
|
* @param translations Values of all translations.
|
|||
|
* @note
|
|||
|
* WEIGHT_IDX = 0;
|
|||
|
* X_IDX = 1;
|
|||
|
* Y_IDX = 2;
|
|||
|
* L_IDX = 3;
|
|||
|
* A_IDX = 4;
|
|||
|
* B_IDX = 5;
|
|||
|
* CONTRAST_IDX = 6;
|
|||
|
* ENTROPY_IDX = 7;
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setTranslations(const std::vector<float>& translations) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Sets sampling points used to sample the input image.
|
|||
|
* @param samplingPoints Vector of sampling points in range [0..1)
|
|||
|
* @note Number of sampling points must be greater or equal to clusterization seed count.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setSamplingPoints(std::vector<Point2f> samplingPoints) = 0;
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/**** clusterizer ****/
|
|||
|
/**
|
|||
|
* @brief Initial seeds (initial number of clusters) for the k-means algorithm.
|
|||
|
*/
|
|||
|
CV_WRAP virtual std::vector<int> getInitSeedIndexes() const = 0;
|
|||
|
/**
|
|||
|
* @brief Initial seed indexes for the k-means algorithm.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setInitSeedIndexes(std::vector<int> initSeedIndexes) = 0;
|
|||
|
/**
|
|||
|
* @brief Number of initial seeds (initial number of clusters) for the k-means algorithm.
|
|||
|
*/
|
|||
|
CV_WRAP virtual int getInitSeedCount() const = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Number of iterations of the k-means clustering.
|
|||
|
* We use fixed number of iterations, since the modified clustering is pruning clusters
|
|||
|
* (not iteratively refining k clusters).
|
|||
|
*/
|
|||
|
CV_WRAP virtual int getIterationCount() const = 0;
|
|||
|
/**
|
|||
|
* @brief Number of iterations of the k-means clustering.
|
|||
|
* We use fixed number of iterations, since the modified clustering is pruning clusters
|
|||
|
* (not iteratively refining k clusters).
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setIterationCount(int iterationCount) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Maximal number of generated clusters. If the number is exceeded,
|
|||
|
* the clusters are sorted by their weights and the smallest clusters are cropped.
|
|||
|
*/
|
|||
|
CV_WRAP virtual int getMaxClustersCount() const = 0;
|
|||
|
/**
|
|||
|
* @brief Maximal number of generated clusters. If the number is exceeded,
|
|||
|
* the clusters are sorted by their weights and the smallest clusters are cropped.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setMaxClustersCount(int maxClustersCount) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief This parameter multiplied by the index of iteration gives lower limit for cluster size.
|
|||
|
* Clusters containing fewer points than specified by the limit have their centroid dismissed
|
|||
|
* and points are reassigned.
|
|||
|
*/
|
|||
|
CV_WRAP virtual int getClusterMinSize() const = 0;
|
|||
|
/**
|
|||
|
* @brief This parameter multiplied by the index of iteration gives lower limit for cluster size.
|
|||
|
* Clusters containing fewer points than specified by the limit have their centroid dismissed
|
|||
|
* and points are reassigned.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setClusterMinSize(int clusterMinSize) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Threshold euclidean distance between two centroids.
|
|||
|
* If two cluster centers are closer than this distance,
|
|||
|
* one of the centroid is dismissed and points are reassigned.
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getJoiningDistance() const = 0;
|
|||
|
/**
|
|||
|
* @brief Threshold euclidean distance between two centroids.
|
|||
|
* If two cluster centers are closer than this distance,
|
|||
|
* one of the centroid is dismissed and points are reassigned.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setJoiningDistance(float joiningDistance) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Remove centroids in k-means whose weight is lesser or equal to given threshold.
|
|||
|
*/
|
|||
|
CV_WRAP virtual float getDropThreshold() const = 0;
|
|||
|
/**
|
|||
|
* @brief Remove centroids in k-means whose weight is lesser or equal to given threshold.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setDropThreshold(float dropThreshold) = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Distance function selector used for measuring distance between two points in k-means.
|
|||
|
*/
|
|||
|
CV_WRAP virtual int getDistanceFunction() const = 0;
|
|||
|
/**
|
|||
|
* @brief Distance function selector used for measuring distance between two points in k-means.
|
|||
|
* Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void setDistanceFunction(int distanceFunction) = 0;
|
|||
|
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Class implementing Signature Quadratic Form Distance (SQFD).
|
|||
|
* @see Christian Beecks, Merih Seran Uysal, Thomas Seidl.
|
|||
|
* Signature quadratic form distance.
|
|||
|
* In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 438-445.
|
|||
|
* ACM, 2010.
|
|||
|
* @cite BeecksUS10
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W PCTSignaturesSQFD : public Algorithm
|
|||
|
{
|
|||
|
public:
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Creates the algorithm instance using selected distance function,
|
|||
|
* similarity function and similarity function parameter.
|
|||
|
* @param distanceFunction Distance function selector. Default: L2
|
|||
|
* Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY
|
|||
|
* @param similarityFunction Similarity function selector. Default: HEURISTIC
|
|||
|
* Available: MINUS, GAUSSIAN, HEURISTIC
|
|||
|
* @param similarityParameter Parameter of the similarity function.
|
|||
|
*/
|
|||
|
CV_WRAP static Ptr<PCTSignaturesSQFD> create(
|
|||
|
const int distanceFunction = 3,
|
|||
|
const int similarityFunction = 2,
|
|||
|
const float similarityParameter = 1.0f);
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Computes Signature Quadratic Form Distance of two signatures.
|
|||
|
* @param _signature0 The first signature.
|
|||
|
* @param _signature1 The second signature.
|
|||
|
*/
|
|||
|
CV_WRAP virtual float computeQuadraticFormDistance(
|
|||
|
InputArray _signature0,
|
|||
|
InputArray _signature1) const = 0;
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Computes Signature Quadratic Form Distance between the reference signature
|
|||
|
* and each of the other image signatures.
|
|||
|
* @param sourceSignature The signature to measure distance of other signatures from.
|
|||
|
* @param imageSignatures Vector of signatures to measure distance from the source signature.
|
|||
|
* @param distances Output vector of measured distances.
|
|||
|
*/
|
|||
|
CV_WRAP virtual void computeQuadraticFormDistances(
|
|||
|
const Mat& sourceSignature,
|
|||
|
const std::vector<Mat>& imageSignatures,
|
|||
|
std::vector<float>& distances) const = 0;
|
|||
|
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Elliptic region around an interest point.
|
|||
|
*/
|
|||
|
class CV_EXPORTS Elliptic_KeyPoint : public KeyPoint
|
|||
|
{
|
|||
|
public:
|
|||
|
Size_<float> axes; //!< the lengths of the major and minor ellipse axes
|
|||
|
float si; //!< the integration scale at which the parameters were estimated
|
|||
|
Matx23f transf; //!< the transformation between image space and local patch space
|
|||
|
Elliptic_KeyPoint();
|
|||
|
Elliptic_KeyPoint(Point2f pt, float angle, Size axes, float size, float si);
|
|||
|
virtual ~Elliptic_KeyPoint();
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Class implementing the Harris-Laplace feature detector as described in @cite Mikolajczyk2004.
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W HarrisLaplaceFeatureDetector : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
/**
|
|||
|
* @brief Creates a new implementation instance.
|
|||
|
*
|
|||
|
* @param numOctaves the number of octaves in the scale-space pyramid
|
|||
|
* @param corn_thresh the threshold for the Harris cornerness measure
|
|||
|
* @param DOG_thresh the threshold for the Difference-of-Gaussians scale selection
|
|||
|
* @param maxCorners the maximum number of corners to consider
|
|||
|
* @param num_layers the number of intermediate scales per octave
|
|||
|
*/
|
|||
|
CV_WRAP static Ptr<HarrisLaplaceFeatureDetector> create(
|
|||
|
int numOctaves=6,
|
|||
|
float corn_thresh=0.01f,
|
|||
|
float DOG_thresh=0.01f,
|
|||
|
int maxCorners=5000,
|
|||
|
int num_layers=4);
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Class implementing affine adaptation for key points.
|
|||
|
*
|
|||
|
* A @ref FeatureDetector and a @ref DescriptorExtractor are wrapped to augment the
|
|||
|
* detected points with their affine invariant elliptic region and to compute
|
|||
|
* the feature descriptors on the regions after warping them into circles.
|
|||
|
*
|
|||
|
* The interface is equivalent to @ref Feature2D, adding operations for
|
|||
|
* @ref Elliptic_KeyPoint "Elliptic_KeyPoints" instead of @ref KeyPoint "KeyPoints".
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W AffineFeature2D : public Feature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
/**
|
|||
|
* @brief Creates an instance wrapping the given keypoint detector and
|
|||
|
* descriptor extractor.
|
|||
|
*/
|
|||
|
static Ptr<AffineFeature2D> create(
|
|||
|
Ptr<FeatureDetector> keypoint_detector,
|
|||
|
Ptr<DescriptorExtractor> descriptor_extractor);
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Creates an instance where keypoint detector and descriptor
|
|||
|
* extractor are identical.
|
|||
|
*/
|
|||
|
static Ptr<AffineFeature2D> create(
|
|||
|
Ptr<FeatureDetector> keypoint_detector)
|
|||
|
{
|
|||
|
return create(keypoint_detector, keypoint_detector);
|
|||
|
}
|
|||
|
|
|||
|
using Feature2D::detect; // overload, don't hide
|
|||
|
/**
|
|||
|
* @brief Detects keypoints in the image using the wrapped detector and
|
|||
|
* performs affine adaptation to augment them with their elliptic regions.
|
|||
|
*/
|
|||
|
virtual void detect(
|
|||
|
InputArray image,
|
|||
|
CV_OUT std::vector<Elliptic_KeyPoint>& keypoints,
|
|||
|
InputArray mask=noArray() ) = 0;
|
|||
|
|
|||
|
using Feature2D::detectAndCompute; // overload, don't hide
|
|||
|
/**
|
|||
|
* @brief Detects keypoints and computes descriptors for their surrounding
|
|||
|
* regions, after warping them into circles.
|
|||
|
*/
|
|||
|
virtual void detectAndCompute(
|
|||
|
InputArray image,
|
|||
|
InputArray mask,
|
|||
|
CV_OUT std::vector<Elliptic_KeyPoint>& keypoints,
|
|||
|
OutputArray descriptors,
|
|||
|
bool useProvidedKeypoints=false ) = 0;
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
@brief Class implementing the Tree Based Morse Regions (TBMR) as described in
|
|||
|
@cite Najman2014 extended with scaled extraction ability.
|
|||
|
|
|||
|
@param min_area prune areas smaller than minArea
|
|||
|
@param max_area_relative prune areas bigger than maxArea = max_area_relative *
|
|||
|
input_image_size
|
|||
|
@param scale_factor scale factor for scaled extraction.
|
|||
|
@param n_scales number of applications of the scale factor (octaves).
|
|||
|
|
|||
|
@note This algorithm is based on Component Tree (Min/Max) as well as MSER but
|
|||
|
uses a Morse-theory approach to extract features.
|
|||
|
|
|||
|
Features are ellipses (similar to MSER, however a MSER feature can never be a
|
|||
|
TBMR feature and vice versa).
|
|||
|
|
|||
|
*/
|
|||
|
class CV_EXPORTS_W TBMR : public AffineFeature2D
|
|||
|
{
|
|||
|
public:
|
|||
|
CV_WRAP static Ptr<TBMR> create(int min_area = 60,
|
|||
|
float max_area_relative = 0.01f,
|
|||
|
float scale_factor = 1.25f,
|
|||
|
int n_scales = -1);
|
|||
|
|
|||
|
CV_WRAP virtual void setMinArea(int minArea) = 0;
|
|||
|
CV_WRAP virtual int getMinArea() const = 0;
|
|||
|
CV_WRAP virtual void setMaxAreaRelative(float maxArea) = 0;
|
|||
|
CV_WRAP virtual float getMaxAreaRelative() const = 0;
|
|||
|
CV_WRAP virtual void setScaleFactor(float scale_factor) = 0;
|
|||
|
CV_WRAP virtual float getScaleFactor() const = 0;
|
|||
|
CV_WRAP virtual void setNScales(int n_scales) = 0;
|
|||
|
CV_WRAP virtual int getNScales() const = 0;
|
|||
|
};
|
|||
|
|
|||
|
/** @brief Estimates cornerness for prespecified KeyPoints using the FAST algorithm
|
|||
|
|
|||
|
@param image grayscale image where keypoints (corners) are detected.
|
|||
|
@param keypoints keypoints which should be tested to fit the FAST criteria. Keypoints not being
|
|||
|
detected as corners are removed.
|
|||
|
@param threshold threshold on difference between intensity of the central pixel and pixels of a
|
|||
|
circle around this pixel.
|
|||
|
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
|
|||
|
(keypoints).
|
|||
|
@param type one of the three neighborhoods as defined in the paper:
|
|||
|
FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
|
|||
|
FastFeatureDetector::TYPE_5_8
|
|||
|
|
|||
|
Detects corners using the FAST algorithm by @cite Rosten06 .
|
|||
|
*/
|
|||
|
CV_EXPORTS void FASTForPointSet( InputArray image, CV_IN_OUT std::vector<KeyPoint>& keypoints,
|
|||
|
int threshold, bool nonmaxSuppression=true, cv::FastFeatureDetector::DetectorType type=FastFeatureDetector::TYPE_9_16);
|
|||
|
|
|||
|
|
|||
|
//! @}
|
|||
|
|
|||
|
|
|||
|
//! @addtogroup xfeatures2d_match
|
|||
|
//! @{
|
|||
|
|
|||
|
/** @brief GMS (Grid-based Motion Statistics) feature matching strategy described in @cite Bian2017gms .
|
|||
|
@param size1 Input size of image1.
|
|||
|
@param size2 Input size of image2.
|
|||
|
@param keypoints1 Input keypoints of image1.
|
|||
|
@param keypoints2 Input keypoints of image2.
|
|||
|
@param matches1to2 Input 1-nearest neighbor matches.
|
|||
|
@param matchesGMS Matches returned by the GMS matching strategy.
|
|||
|
@param withRotation Take rotation transformation into account.
|
|||
|
@param withScale Take scale transformation into account.
|
|||
|
@param thresholdFactor The higher, the less matches.
|
|||
|
@note
|
|||
|
Since GMS works well when the number of features is large, we recommend to use the ORB feature and set FastThreshold to 0 to get as many as possible features quickly.
|
|||
|
If matching results are not satisfying, please add more features. (We use 10000 for images with 640 X 480).
|
|||
|
If your images have big rotation and scale changes, please set withRotation or withScale to true.
|
|||
|
*/
|
|||
|
CV_EXPORTS_W void matchGMS(const Size& size1, const Size& size2, const std::vector<KeyPoint>& keypoints1, const std::vector<KeyPoint>& keypoints2,
|
|||
|
const std::vector<DMatch>& matches1to2, CV_OUT std::vector<DMatch>& matchesGMS, const bool withRotation = false,
|
|||
|
const bool withScale = false, const double thresholdFactor = 6.0);
|
|||
|
|
|||
|
/** @brief LOGOS (Local geometric support for high-outlier spatial verification) feature matching strategy described in @cite Lowry2018LOGOSLG .
|
|||
|
@param keypoints1 Input keypoints of image1.
|
|||
|
@param keypoints2 Input keypoints of image2.
|
|||
|
@param nn1 Index to the closest BoW centroid for each descriptors of image1.
|
|||
|
@param nn2 Index to the closest BoW centroid for each descriptors of image2.
|
|||
|
@param matches1to2 Matches returned by the LOGOS matching strategy.
|
|||
|
@note
|
|||
|
This matching strategy is suitable for features matching against large scale database.
|
|||
|
First step consists in constructing the bag-of-words (BoW) from a representative image database.
|
|||
|
Image descriptors are then represented by their closest codevector (nearest BoW centroid).
|
|||
|
*/
|
|||
|
CV_EXPORTS_W void matchLOGOS(const std::vector<KeyPoint>& keypoints1, const std::vector<KeyPoint>& keypoints2,
|
|||
|
const std::vector<int>& nn1, const std::vector<int>& nn2,
|
|||
|
std::vector<DMatch>& matches1to2);
|
|||
|
|
|||
|
//! @}
|
|||
|
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#endif
|