fast-yolo4/3rdparty/yolo4/inc/darknet.h

1121 lines
24 KiB
C
Raw Normal View History

2024-09-25 09:43:03 +08:00
#ifndef DARKNET_API
#define DARKNET_API
#if defined(_MSC_VER) && _MSC_VER < 1900
#define inline __inline
#endif
#if defined(DEBUG) && !defined(_CRTDBG_MAP_ALLOC)
#define _CRTDBG_MAP_ALLOC
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <assert.h>
#include <pthread.h>
#ifndef LIB_API
#ifdef LIB_EXPORTS
#if defined(_MSC_VER)
#define LIB_API __declspec(dllexport)
#else
#define LIB_API __attribute__((visibility("default")))
#endif
#else
#if defined(_MSC_VER)
#define LIB_API
#else
#define LIB_API
#endif
#endif
#endif
#define SECRET_NUM -1234
typedef enum { UNUSED_DEF_VAL } UNUSED_ENUM_TYPE;
#ifdef GPU
#include <cuda_runtime.h>
#include <curand.h>
#include <cublas_v2.h>
#ifdef CUDNN
#include <cudnn.h>
#endif // CUDNN
#endif // GPU
#ifdef __cplusplus
extern "C" {
#endif
struct network;
typedef struct network network;
struct network_state;
typedef struct network_state network_state;
struct layer;
typedef struct layer layer;
struct image;
typedef struct image image;
struct detection;
typedef struct detection detection;
struct load_args;
typedef struct load_args load_args;
struct data;
typedef struct data data;
struct metadata;
typedef struct metadata metadata;
struct tree;
typedef struct tree tree;
extern int gpu_index;
// option_list.h
typedef struct metadata {
int classes;
char **names;
} metadata;
// tree.h
typedef struct tree {
int *leaf;
int n;
int *parent;
int *child;
int *group;
char **name;
int groups;
int *group_size;
int *group_offset;
} tree;
// activations.h
typedef enum {
LOGISTIC, RELU, RELU6, RELIE, LINEAR, RAMP, TANH, PLSE, REVLEAKY, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU, GELU, SWISH, MISH, HARD_MISH, NORM_CHAN, NORM_CHAN_SOFTMAX, NORM_CHAN_SOFTMAX_MAXVAL
}ACTIVATION;
// parser.h
typedef enum {
IOU, GIOU, MSE, DIOU, CIOU
} IOU_LOSS;
// parser.h
typedef enum {
DEFAULT_NMS, GREEDY_NMS, DIOU_NMS, CORNERS_NMS
} NMS_KIND;
// parser.h
typedef enum {
YOLO_CENTER = 1 << 0, YOLO_LEFT_TOP = 1 << 1, YOLO_RIGHT_BOTTOM = 1 << 2
} YOLO_POINT;
// parser.h
typedef enum {
NO_WEIGHTS, PER_FEATURE, PER_CHANNEL
} WEIGHTS_TYPE_T;
// parser.h
typedef enum {
NO_NORMALIZATION, RELU_NORMALIZATION, SOFTMAX_NORMALIZATION
} WEIGHTS_NORMALIZATION_T;
// image.h
typedef enum{
PNG, BMP, TGA, JPG
} IMTYPE;
// activations.h
typedef enum{
MULT, ADD, SUB, DIV
} BINARY_ACTIVATION;
// blas.h
typedef struct contrastive_params {
float sim;
float exp_sim;
float P;
int i, j;
int time_step_i, time_step_j;
} contrastive_params;
// layer.h
typedef enum {
CONVOLUTIONAL,
DECONVOLUTIONAL,
CONNECTED,
MAXPOOL,
LOCAL_AVGPOOL,
SOFTMAX,
DETECTION,
DROPOUT,
CROP,
ROUTE,
COST,
NORMALIZATION,
AVGPOOL,
LOCAL,
SHORTCUT,
SCALE_CHANNELS,
SAM,
ACTIVE,
RNN,
GRU,
LSTM,
CONV_LSTM,
HISTORY,
CRNN,
BATCHNORM,
NETWORK,
XNOR,
REGION,
YOLO,
GAUSSIAN_YOLO,
ISEG,
REORG,
REORG_OLD,
UPSAMPLE,
LOGXENT,
L2NORM,
EMPTY,
BLANK,
CONTRASTIVE,
IMPLICIT
} LAYER_TYPE;
// layer.h
typedef enum{
SSE, MASKED, L1, SEG, SMOOTH,WGAN
} COST_TYPE;
// layer.h
typedef struct update_args {
int batch;
float learning_rate;
float momentum;
float decay;
int adam;
float B1;
float B2;
float eps;
int t;
} update_args;
// layer.h
struct layer {
LAYER_TYPE type;
ACTIVATION activation;
ACTIVATION lstm_activation;
COST_TYPE cost_type;
void(*forward) (struct layer, struct network_state);
void(*backward) (struct layer, struct network_state);
void(*update) (struct layer, int, float, float, float);
void(*forward_gpu) (struct layer, struct network_state);
void(*backward_gpu) (struct layer, struct network_state);
void(*update_gpu) (struct layer, int, float, float, float, float);
layer *share_layer;
int train;
int avgpool;
int batch_normalize;
int shortcut;
int batch;
int dynamic_minibatch;
int forced;
int flipped;
int inputs;
int outputs;
float mean_alpha;
int nweights;
int nbiases;
int extra;
int truths;
int h, w, c;
int out_h, out_w, out_c;
int n;
int max_boxes;
int truth_size;
int groups;
int group_id;
int size;
int side;
int stride;
int stride_x;
int stride_y;
int dilation;
int antialiasing;
int maxpool_depth;
int maxpool_zero_nonmax;
int out_channels;
float reverse;
int coordconv;
int flatten;
int spatial;
int pad;
int sqrt;
int flip;
int index;
int scale_wh;
int binary;
int xnor;
int peephole;
int use_bin_output;
int keep_delta_gpu;
int optimized_memory;
int steps;
int history_size;
int bottleneck;
float time_normalizer;
int state_constrain;
int hidden;
int truth;
float smooth;
float dot;
int deform;
int grad_centr;
int sway;
int rotate;
int stretch;
int stretch_sway;
float angle;
float jitter;
float resize;
float saturation;
float exposure;
float shift;
float ratio;
float learning_rate_scale;
float clip;
int focal_loss;
float *classes_multipliers;
float label_smooth_eps;
int noloss;
int softmax;
int classes;
int detection;
int embedding_layer_id;
float *embedding_output;
int embedding_size;
float sim_thresh;
int track_history_size;
int dets_for_track;
int dets_for_show;
float track_ciou_norm;
int coords;
int background;
int rescore;
int objectness;
int does_cost;
int joint;
int noadjust;
int reorg;
int log;
int tanh;
int *mask;
int total;
float bflops;
int adam;
float B1;
float B2;
float eps;
int t;
float alpha;
float beta;
float kappa;
float coord_scale;
float object_scale;
float noobject_scale;
float mask_scale;
float class_scale;
int bias_match;
float random;
float ignore_thresh;
float truth_thresh;
float iou_thresh;
float thresh;
float focus;
int classfix;
int absolute;
int assisted_excitation;
int onlyforward;
int stopbackward;
int train_only_bn;
int dont_update;
int burnin_update;
int dontload;
int dontsave;
int dontloadscales;
int numload;
float temperature;
float probability;
float dropblock_size_rel;
int dropblock_size_abs;
int dropblock;
float scale;
int receptive_w;
int receptive_h;
int receptive_w_scale;
int receptive_h_scale;
char * cweights;
int * indexes;
int * input_layers;
int * input_sizes;
float **layers_output;
float **layers_delta;
WEIGHTS_TYPE_T weights_type;
WEIGHTS_NORMALIZATION_T weights_normalization;
int * map;
int * counts;
float ** sums;
float * rand;
float * cost;
int *labels;
int *class_ids;
int contrastive_neg_max;
float *cos_sim;
float *exp_cos_sim;
float *p_constrastive;
contrastive_params *contrast_p_gpu;
float * state;
float * prev_state;
float * forgot_state;
float * forgot_delta;
float * state_delta;
float * combine_cpu;
float * combine_delta_cpu;
float *concat;
float *concat_delta;
float *binary_weights;
float *biases;
float *bias_updates;
float *scales;
float *scale_updates;
float *weights_ema;
float *biases_ema;
float *scales_ema;
float *weights;
float *weight_updates;
float scale_x_y;
int objectness_smooth;
int new_coords;
int show_details;
float max_delta;
float uc_normalizer;
float iou_normalizer;
float obj_normalizer;
float cls_normalizer;
float delta_normalizer;
IOU_LOSS iou_loss;
IOU_LOSS iou_thresh_kind;
NMS_KIND nms_kind;
float beta_nms;
YOLO_POINT yolo_point;
char *align_bit_weights_gpu;
float *mean_arr_gpu;
float *align_workspace_gpu;
float *transposed_align_workspace_gpu;
int align_workspace_size;
char *align_bit_weights;
float *mean_arr;
int align_bit_weights_size;
int lda_align;
int new_lda;
int bit_align;
float *col_image;
float * delta;
float * output;
float * activation_input;
int delta_pinned;
int output_pinned;
float * loss;
float * squared;
float * norms;
float * spatial_mean;
float * mean;
float * variance;
float * mean_delta;
float * variance_delta;
float * rolling_mean;
float * rolling_variance;
float * x;
float * x_norm;
float * m;
float * v;
float * bias_m;
float * bias_v;
float * scale_m;
float * scale_v;
float *z_cpu;
float *r_cpu;
float *h_cpu;
float *stored_h_cpu;
float * prev_state_cpu;
float *temp_cpu;
float *temp2_cpu;
float *temp3_cpu;
float *dh_cpu;
float *hh_cpu;
float *prev_cell_cpu;
float *cell_cpu;
float *f_cpu;
float *i_cpu;
float *g_cpu;
float *o_cpu;
float *c_cpu;
float *stored_c_cpu;
float *dc_cpu;
float *binary_input;
uint32_t *bin_re_packed_input;
char *t_bit_input;
struct layer *input_layer;
struct layer *self_layer;
struct layer *output_layer;
struct layer *reset_layer;
struct layer *update_layer;
struct layer *state_layer;
struct layer *input_gate_layer;
struct layer *state_gate_layer;
struct layer *input_save_layer;
struct layer *state_save_layer;
struct layer *input_state_layer;
struct layer *state_state_layer;
struct layer *input_z_layer;
struct layer *state_z_layer;
struct layer *input_r_layer;
struct layer *state_r_layer;
struct layer *input_h_layer;
struct layer *state_h_layer;
struct layer *wz;
struct layer *uz;
struct layer *wr;
struct layer *ur;
struct layer *wh;
struct layer *uh;
struct layer *uo;
struct layer *wo;
struct layer *vo;
struct layer *uf;
struct layer *wf;
struct layer *vf;
struct layer *ui;
struct layer *wi;
struct layer *vi;
struct layer *ug;
struct layer *wg;
tree *softmax_tree;
size_t workspace_size;
//#ifdef GPU
int *indexes_gpu;
int stream;
int wait_stream_id;
float *z_gpu;
float *r_gpu;
float *h_gpu;
float *stored_h_gpu;
float *bottelneck_hi_gpu;
float *bottelneck_delta_gpu;
float *temp_gpu;
float *temp2_gpu;
float *temp3_gpu;
float *dh_gpu;
float *hh_gpu;
float *prev_cell_gpu;
float *prev_state_gpu;
float *last_prev_state_gpu;
float *last_prev_cell_gpu;
float *cell_gpu;
float *f_gpu;
float *i_gpu;
float *g_gpu;
float *o_gpu;
float *c_gpu;
float *stored_c_gpu;
float *dc_gpu;
// adam
float *m_gpu;
float *v_gpu;
float *bias_m_gpu;
float *scale_m_gpu;
float *bias_v_gpu;
float *scale_v_gpu;
float * combine_gpu;
float * combine_delta_gpu;
float * forgot_state_gpu;
float * forgot_delta_gpu;
float * state_gpu;
float * state_delta_gpu;
float * gate_gpu;
float * gate_delta_gpu;
float * save_gpu;
float * save_delta_gpu;
float * concat_gpu;
float * concat_delta_gpu;
float *binary_input_gpu;
float *binary_weights_gpu;
float *bin_conv_shortcut_in_gpu;
float *bin_conv_shortcut_out_gpu;
float * mean_gpu;
float * variance_gpu;
float * m_cbn_avg_gpu;
float * v_cbn_avg_gpu;
float * rolling_mean_gpu;
float * rolling_variance_gpu;
float * variance_delta_gpu;
float * mean_delta_gpu;
float * col_image_gpu;
float * x_gpu;
float * x_norm_gpu;
float * weights_gpu;
float * weight_updates_gpu;
float * weight_deform_gpu;
float * weight_change_gpu;
float * weights_gpu16;
float * weight_updates_gpu16;
float * biases_gpu;
float * bias_updates_gpu;
float * bias_change_gpu;
float * scales_gpu;
float * scale_updates_gpu;
float * scale_change_gpu;
float * input_antialiasing_gpu;
float * output_gpu;
float * output_avg_gpu;
float * activation_input_gpu;
float * loss_gpu;
float * delta_gpu;
float * cos_sim_gpu;
float * rand_gpu;
float * drop_blocks_scale;
float * drop_blocks_scale_gpu;
float * squared_gpu;
float * norms_gpu;
float *gt_gpu;
float *a_avg_gpu;
int *input_sizes_gpu;
float **layers_output_gpu;
float **layers_delta_gpu;
#ifdef CUDNN
cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
cudnnTensorDescriptor_t srcTensorDesc16, dstTensorDesc16;
cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
cudnnTensorDescriptor_t dsrcTensorDesc16, ddstTensorDesc16;
cudnnTensorDescriptor_t normTensorDesc, normDstTensorDesc, normDstTensorDescF16;
cudnnFilterDescriptor_t weightDesc, weightDesc16;
cudnnFilterDescriptor_t dweightDesc, dweightDesc16;
cudnnConvolutionDescriptor_t convDesc;
cudnnConvolutionFwdAlgo_t fw_algo, fw_algo16;
cudnnConvolutionBwdDataAlgo_t bd_algo, bd_algo16;
cudnnConvolutionBwdFilterAlgo_t bf_algo, bf_algo16;
cudnnPoolingDescriptor_t poolingDesc;
#else // CUDNN
void* srcTensorDesc, *dstTensorDesc;
void* srcTensorDesc16, *dstTensorDesc16;
void* dsrcTensorDesc, *ddstTensorDesc;
void* dsrcTensorDesc16, *ddstTensorDesc16;
void* normTensorDesc, *normDstTensorDesc, *normDstTensorDescF16;
void* weightDesc, *weightDesc16;
void* dweightDesc, *dweightDesc16;
void* convDesc;
UNUSED_ENUM_TYPE fw_algo, fw_algo16;
UNUSED_ENUM_TYPE bd_algo, bd_algo16;
UNUSED_ENUM_TYPE bf_algo, bf_algo16;
void* poolingDesc;
#endif // CUDNN
//#endif // GPU
};
// network.h
typedef enum {
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM, SGDR
} learning_rate_policy;
// network.h
typedef struct network {
int n;
int batch;
uint64_t *seen;
float *badlabels_reject_threshold;
float *delta_rolling_max;
float *delta_rolling_avg;
float *delta_rolling_std;
int weights_reject_freq;
int equidistant_point;
float badlabels_rejection_percentage;
float num_sigmas_reject_badlabels;
float ema_alpha;
int *cur_iteration;
float loss_scale;
int *t;
float epoch;
int subdivisions;
layer *layers;
float *output;
learning_rate_policy policy;
int benchmark_layers;
int *total_bbox;
int *rewritten_bbox;
float learning_rate;
float learning_rate_min;
float learning_rate_max;
int batches_per_cycle;
int batches_cycle_mult;
float momentum;
float decay;
float gamma;
float scale;
float power;
int time_steps;
int step;
int max_batches;
int num_boxes;
int train_images_num;
float *seq_scales;
float *scales;
int *steps;
int num_steps;
int burn_in;
int cudnn_half;
int adam;
float B1;
float B2;
float eps;
int inputs;
int outputs;
int truths;
int notruth;
int h, w, c;
int max_crop;
int min_crop;
float max_ratio;
float min_ratio;
int center;
int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
int gaussian_noise;
int blur;
int mixup;
float label_smooth_eps;
int resize_step;
int attention;
int adversarial;
float adversarial_lr;
float max_chart_loss;
int letter_box;
int mosaic_bound;
int contrastive;
int contrastive_jit_flip;
int contrastive_color;
int unsupervised;
float angle;
float aspect;
float exposure;
float saturation;
float hue;
int random;
int track;
int augment_speed;
int sequential_subdivisions;
int init_sequential_subdivisions;
int current_subdivision;
int try_fix_nan;
int gpu_index;
tree *hierarchy;
float *input;
float *truth;
float *delta;
float *workspace;
int train;
int index;
float *cost;
float clip;
//#ifdef GPU
//float *input_gpu;
//float *truth_gpu;
float *delta_gpu;
float *output_gpu;
float *input_state_gpu;
float *input_pinned_cpu;
int input_pinned_cpu_flag;
float **input_gpu;
float **truth_gpu;
float **input16_gpu;
float **output16_gpu;
size_t *max_input16_size;
size_t *max_output16_size;
int wait_stream;
void *cuda_graph;
void *cuda_graph_exec;
int use_cuda_graph;
int *cuda_graph_ready;
float *global_delta_gpu;
float *state_delta_gpu;
size_t max_delta_gpu_size;
//#endif // GPU
int optimized_memory;
int dynamic_minibatch;
size_t workspace_size_limit;
} network;
// network.h
typedef struct network_state {
float *truth;
float *input;
float *delta;
float *workspace;
int train;
int index;
network net;
} network_state;
//typedef struct {
// int w;
// int h;
// float scale;
// float rad;
// float dx;
// float dy;
// float aspect;
//} augment_args;
// image.h
typedef struct image {
int w;
int h;
int c;
float *data;
} image;
//typedef struct {
// int w;
// int h;
// int c;
// float *data;
//} image;
// box.h
typedef struct box {
float x, y, w, h;
} box;
// box.h
typedef struct boxabs {
float left, right, top, bot;
} boxabs;
// box.h
typedef struct dxrep {
float dt, db, dl, dr;
} dxrep;
// box.h
typedef struct ious {
float iou, giou, diou, ciou;
dxrep dx_iou;
dxrep dx_giou;
} ious;
// box.h
typedef struct detection{
box bbox;
int classes;
int best_class_idx;
float *prob;
float *mask;
float objectness;
int sort_class;
float *uc; // Gaussian_YOLOv3 - tx,ty,tw,th uncertainty
int points; // bit-0 - center, bit-1 - top-left-corner, bit-2 - bottom-right-corner
float *embeddings; // embeddings for tracking
int embedding_size;
float sim;
int track_id;
} detection;
// network.c -batch inference
typedef struct det_num_pair {
int num;
detection *dets;
} det_num_pair, *pdet_num_pair;
// matrix.h
typedef struct matrix {
int rows, cols;
float **vals;
} matrix;
// data.h
typedef struct data {
int w, h;
matrix X;
matrix y;
int shallow;
int *num_boxes;
box **boxes;
} data;
// data.h
typedef enum {
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA, LETTERBOX_DATA, REGRESSION_DATA, SEGMENTATION_DATA, INSTANCE_DATA, ISEG_DATA
} data_type;
// data.h
typedef struct load_args {
int threads;
char **paths;
char *path;
int n;
int m;
char **labels;
int h;
int w;
int c; // color depth
int out_w;
int out_h;
int nh;
int nw;
int num_boxes;
int truth_size;
int min, max, size;
int classes;
int background;
int scale;
int center;
int coords;
int mini_batch;
int track;
int augment_speed;
int letter_box;
int mosaic_bound;
int show_imgs;
int dontuse_opencv;
int contrastive;
int contrastive_jit_flip;
int contrastive_color;
float jitter;
float resize;
int flip;
int gaussian_noise;
int blur;
int mixup;
float label_smooth_eps;
float angle;
float aspect;
float saturation;
float exposure;
float hue;
data *d;
image *im;
image *resized;
data_type type;
tree *hierarchy;
} load_args;
// data.h
typedef struct box_label {
int id;
int track_id;
float x, y, w, h;
float left, right, top, bottom;
} box_label;
// list.h
//typedef struct node {
// void *val;
// struct node *next;
// struct node *prev;
//} node;
// list.h
//typedef struct list {
// int size;
// node *front;
// node *back;
//} list;
// -----------------------------------------------------
// parser.c
LIB_API network *load_network(char *cfg, char *weights, int clear);
LIB_API network *load_network_custom(char *cfg, char *weights, int clear, int batch);
LIB_API void free_network(network net);
LIB_API void free_network_ptr(network* net);
// network.c
LIB_API load_args get_base_args(network *net);
// box.h
LIB_API void do_nms_sort(detection *dets, int total, int classes, float thresh);
LIB_API void do_nms_obj(detection *dets, int total, int classes, float thresh);
LIB_API void diounms_sort(detection *dets, int total, int classes, float thresh, NMS_KIND nms_kind, float beta1);
// network.h
LIB_API float *network_predict(network net, float *input);
LIB_API float *network_predict_ptr(network *net, float *input);
LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
LIB_API det_num_pair* network_predict_batch(network *net, image im, int batch_size, int w, int h, float thresh, float hier, int *map, int relative, int letter);
LIB_API void free_detections(detection *dets, int n);
LIB_API void free_batch_detections(det_num_pair *det_num_pairs, int n);
LIB_API void fuse_conv_batchnorm(network net);
LIB_API void calculate_binary_weights(network net);
LIB_API char *detection_to_json(detection *dets, int nboxes, int classes, char **names, long long int frame_id, char *filename);
LIB_API layer* get_network_layer(network* net, int i);
//LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
LIB_API detection *make_network_boxes(network *net, float thresh, int *num);
LIB_API void reset_rnn(network *net);
LIB_API float *network_predict_image(network *net, image im);
LIB_API float *network_predict_image_letterbox(network *net, image im);
LIB_API float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, const int map_points, int letter_box, network *existing_net);
LIB_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, float thresh, float iou_thresh, int mjpeg_port, int show_imgs, int benchmark_layers, char* chart_path);
LIB_API void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers);
LIB_API int network_width(network *net);
LIB_API int network_height(network *net);
LIB_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm);
// image.h
LIB_API void make_image_red(image im);
LIB_API image make_attention_image(int img_size, float *original_delta_cpu, float *original_input_cpu, int w, int h, int c, float alpha);
LIB_API image resize_image(image im, int w, int h);
LIB_API void quantize_image(image im);
LIB_API void copy_image_from_bytes(image im, char *pdata);
LIB_API image letterbox_image(image im, int w, int h);
LIB_API void rgbgr_image(image im);
LIB_API image make_image(int w, int h, int c);
LIB_API image load_image_color(char *filename, int w, int h);
LIB_API void free_image(image m);
LIB_API image crop_image(image im, int dx, int dy, int w, int h);
LIB_API image resize_min(image im, int min);
// layer.h
LIB_API void free_layer_custom(layer l, int keep_cudnn_desc);
LIB_API void free_layer(layer l);
// data.c
LIB_API void free_data(data d);
LIB_API pthread_t load_data(load_args args);
LIB_API void free_load_threads(void *ptr);
LIB_API pthread_t load_data_in_thread(load_args args);
LIB_API void *load_thread(void *ptr);
// dark_cuda.h
LIB_API void cuda_pull_array(float *x_gpu, float *x, size_t n);
LIB_API void cuda_pull_array_async(float *x_gpu, float *x, size_t n);
LIB_API void cuda_set_device(int n);
LIB_API void *cuda_get_context();
// utils.h
LIB_API void free_ptrs(void **ptrs, int n);
LIB_API void top_k(float *a, int n, int k, int *index);
// tree.h
LIB_API tree *read_tree(char *filename);
// option_list.h
LIB_API metadata get_metadata(char *file);
// http_stream.h
LIB_API void delete_json_sender();
LIB_API void send_json_custom(char const* send_buf, int port, int timeout);
LIB_API double get_time_point();
void start_timer();
void stop_timer();
double get_time();
void stop_timer_and_show();
void stop_timer_and_show_name(char *name);
void show_total_time();
LIB_API void set_track_id(detection *new_dets, int new_dets_num, float thresh, float sim_thresh, float track_ciou_norm, int deque_size, int dets_for_track, int dets_for_show);
LIB_API int fill_remaining_id(detection *new_dets, int new_dets_num, int new_track_id, float thresh);
// gemm.h
LIB_API void init_cpu();
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // DARKNET_API