fast-yolo4/3rdparty/opencv/inc/opencv2/face/face_alignment.hpp

61 lines
3.0 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_FACE_ALIGNMENT_HPP__
#define __OPENCV_FACE_ALIGNMENT_HPP__
#include "opencv2/face/facemark_train.hpp"
namespace cv{
namespace face{
class CV_EXPORTS_W FacemarkKazemi : public Facemark
{
public:
struct CV_EXPORTS Params
{
/**
* \brief Constructor
*/
Params();
/// cascade_depth This stores the deapth of cascade used for training.
unsigned long cascade_depth;
/// tree_depth This stores the max height of the regression tree built.
unsigned long tree_depth;
/// num_trees_per_cascade_level This stores number of trees fit per cascade level.
unsigned long num_trees_per_cascade_level;
/// learning_rate stores the learning rate in gradient boosting, also referred as shrinkage.
float learning_rate;
/// oversampling_amount stores number of initialisations used to create training samples.
unsigned long oversampling_amount;
/// num_test_coordinates stores number of test coordinates.
unsigned long num_test_coordinates;
/// lambda stores a value to calculate probability of closeness of two coordinates.
float lambda;
/// num_test_splits stores number of random test splits generated.
unsigned long num_test_splits;
/// configfile stores the name of the file containing the values of training parameters
String configfile;
};
static Ptr<FacemarkKazemi> create(const FacemarkKazemi::Params &parameters = FacemarkKazemi::Params());
virtual ~FacemarkKazemi();
/** @brief This function is used to train the model using gradient boosting to get a cascade of regressors
*which can then be used to predict shape.
*@param images A vector of type cv::Mat which stores the images which are used in training samples.
*@param landmarks A vector of vectors of type cv::Point2f which stores the landmarks detected in a particular image.
*@param scale A size of type cv::Size to which all images and landmarks have to be scaled to.
*@param configfile A variable of type std::string which stores the name of the file storing parameters for training the model.
*@param modelFilename A variable of type std::string which stores the name of the trained model file that has to be saved.
*@returns A boolean value. The function returns true if the model is trained properly or false if it is not trained.
*/
virtual bool training(std::vector<Mat>& images, std::vector< std::vector<Point2f> >& landmarks,std::string configfile,Size scale,std::string modelFilename = "face_landmarks.dat")=0;
/// set the custom face detector
virtual bool setFaceDetector(bool(*f)(InputArray , OutputArray, void*), void* userData)=0;
/// get faces using the custom detector
virtual bool getFaces(InputArray image, OutputArray faces)=0;
};
}} // namespace
#endif