fast-yolo4/3rdparty/opencv/inc/opencv2/face/mace.hpp

115 lines
3.0 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
// This file is part of the OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __mace_h_onboard__
#define __mace_h_onboard__
#include "opencv2/core.hpp"
namespace cv {
namespace face {
//! @addtogroup face
//! @{
/**
@brief Minimum Average Correlation Energy Filter
useful for authentication with (cancellable) biometrical features.
(does not need many positives to train (10-50), and no negatives at all, also robust to noise/salting)
see also: @cite Savvides04
this implementation is largely based on: https://code.google.com/archive/p/pam-face-authentication (GSOC 2009)
use it like:
@code
Ptr<face::MACE> mace = face::MACE::create(64);
vector<Mat> pos_images = ...
mace->train(pos_images);
Mat query = ...
bool same = mace->same(query);
@endcode
you can also use two-factor authentication, with an additional passphrase:
@code
String owners_passphrase = "ilikehotdogs";
Ptr<face::MACE> mace = face::MACE::create(64);
mace->salt(owners_passphrase);
vector<Mat> pos_images = ...
mace->train(pos_images);
// now, users have to give a valid passphrase, along with the image:
Mat query = ...
cout << "enter passphrase: ";
string pass;
getline(cin, pass);
mace->salt(pass);
bool same = mace->same(query);
@endcode
save/load your model:
@code
Ptr<face::MACE> mace = face::MACE::create(64);
mace->train(pos_images);
mace->save("my_mace.xml");
// later:
Ptr<MACE> reloaded = MACE::load("my_mace.xml");
reloaded->same(some_image);
@endcode
*/
class CV_EXPORTS_W MACE : public cv::Algorithm
{
public:
/**
@brief optionally encrypt images with random convolution
@param passphrase a crc64 random seed will get generated from this
*/
CV_WRAP virtual void salt(const cv::String &passphrase) = 0;
/**
@brief train it on positive features
compute the mace filter: `h = D(-1) * X * (X(+) * D(-1) * X)(-1) * C`
also calculate a minimal threshold for this class, the smallest self-similarity from the train images
@param images a vector<Mat> with the train images
*/
CV_WRAP virtual void train(cv::InputArrayOfArrays images) = 0;
/**
@brief correlate query img and threshold to min class value
@param query a Mat with query image
*/
CV_WRAP virtual bool same(cv::InputArray query) const = 0;
/**
@brief constructor
@param filename build a new MACE instance from a pre-serialized FileStorage
@param objname (optional) top-level node in the FileStorage
*/
CV_WRAP static cv::Ptr<MACE> load(const String &filename, const String &objname=String());
/**
@brief constructor
@param IMGSIZE images will get resized to this (should be an even number)
*/
CV_WRAP static cv::Ptr<MACE> create(int IMGSIZE=64);
};
//! @}
}/* namespace face */
}/* namespace cv */
#endif // __mace_h_onboard__