fast-yolo4/3rdparty/opencv/inc/opencv2/gapi/gstreaming.hpp

431 lines
15 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#ifndef OPENCV_GAPI_GSTREAMING_COMPILED_HPP
#define OPENCV_GAPI_GSTREAMING_COMPILED_HPP
#include <memory>
#include <vector>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/util/optional.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/streaming/source.hpp>
namespace cv {
template<class T> using optional = cv::util::optional<T>;
namespace detail {
template<typename T> struct wref_spec {
using type = T;
};
template<typename T> struct wref_spec<std::vector<T> > {
using type = T;
};
template<typename RefHolder>
struct OptRef {
struct OptHolder {
virtual void mov(RefHolder &h) = 0;
virtual void reset() = 0;
virtual ~OptHolder() = default;
using Ptr = std::shared_ptr<OptHolder>;
};
template<class T> struct Holder final: OptHolder {
std::reference_wrapper<cv::optional<T> > m_opt_ref;
explicit Holder(cv::optional<T>& opt) : m_opt_ref(std::ref(opt)) {
}
virtual void mov(RefHolder &h) override {
using U = typename wref_spec<T>::type;
m_opt_ref.get() = cv::util::make_optional(std::move(h.template wref<U>()));
}
virtual void reset() override {
m_opt_ref.get().reset();
}
};
template<class T>
explicit OptRef(cv::optional<T>& t) : m_opt{new Holder<T>(t)} {}
void mov(RefHolder &h) { m_opt->mov(h); }
void reset() { m_opt->reset();}
private:
typename OptHolder::Ptr m_opt;
};
using OptionalVectorRef = OptRef<cv::detail::VectorRef>;
using OptionalOpaqueRef = OptRef<cv::detail::OpaqueRef>;
} // namespace detail
// TODO: Keep it in sync with GRunArgP (derive the type automatically?)
using GOptRunArgP = util::variant<
optional<cv::Mat>*,
optional<cv::RMat>*,
optional<cv::MediaFrame>*,
optional<cv::Scalar>*,
cv::detail::OptionalVectorRef,
cv::detail::OptionalOpaqueRef
>;
using GOptRunArgsP = std::vector<GOptRunArgP>;
using GOptRunArg = util::variant<
optional<cv::Mat>,
optional<cv::RMat>,
optional<cv::MediaFrame>,
optional<cv::Scalar>,
optional<cv::detail::VectorRef>,
optional<cv::detail::OpaqueRef>
>;
using GOptRunArgs = std::vector<GOptRunArg>;
namespace detail {
template<typename T> inline GOptRunArgP wrap_opt_arg(optional<T>& arg) {
// By default, T goes to an OpaqueRef. All other types are specialized
return GOptRunArgP{OptionalOpaqueRef(arg)};
}
template<typename T> inline GOptRunArgP wrap_opt_arg(optional<std::vector<T> >& arg) {
return GOptRunArgP{OptionalVectorRef(arg)};
}
template<> inline GOptRunArgP wrap_opt_arg(optional<cv::Mat> &m) {
return GOptRunArgP{&m};
}
template<> inline GOptRunArgP wrap_opt_arg(optional<cv::RMat> &m) {
return GOptRunArgP{&m};
}
template<> inline GOptRunArgP wrap_opt_arg(optional<cv::MediaFrame> &f) {
return GOptRunArgP{&f};
}
template<> inline GOptRunArgP wrap_opt_arg(optional<cv::Scalar> &s) {
return GOptRunArgP{&s};
}
} // namespace detail
// Now cv::gout() may produce an empty vector (see "dynamic graphs"), so
// there may be a conflict between these two. State here that Opt version
// _must_ have at least one input for this overload
template<typename T, typename... Ts>
inline GOptRunArgsP gout(optional<T>&arg, optional<Ts>&... args)
{
return GOptRunArgsP{ detail::wrap_opt_arg(arg), detail::wrap_opt_arg(args)... };
}
/**
* \addtogroup gapi_main_classes
* @{
*/
/**
* @brief Represents a computation (graph) compiled for streaming.
*
* This class represents a product of graph compilation (calling
* cv::GComputation::compileStreaming()). Objects of this class
* actually do stream processing, and the whole pipeline execution
* complexity is incapsulated into objects of this class. Execution
* model has two levels: at the very top, the execution of a
* heterogeneous graph is aggressively pipelined; at the very bottom
* the execution of every internal block is determined by its
* associated backend. Backends are selected based on kernel packages
* passed via compilation arguments ( see @ref gapi_compile_args,
* GNetworkPackage, GKernelPackage for details).
*
* GStreamingCompiled objects have a "player" semantics -- there are
* methods like start() and stop(). GStreamingCompiled has a full
* control over a videostream and so is stateful. You need to specify the
* input stream data using setSource() and then call start() to
* actually start processing. After that, use pull() or try_pull() to
* obtain next processed data frame from the graph in a blocking or
* non-blocking way, respectively.
*
* Currently a single GStreamingCompiled can process only one video
* streat at time. Produce multiple GStreamingCompiled objects to run the
* same graph on multiple video streams.
*
* @sa GCompiled
*/
class GAPI_EXPORTS_W_SIMPLE GStreamingCompiled
{
public:
class GAPI_EXPORTS Priv;
GAPI_WRAP GStreamingCompiled();
// FIXME: More overloads?
/**
* @brief Specify the input data to GStreamingCompiled for
* processing, a generic version.
*
* Use gin() to create an input parameter vector.
*
* Input vectors must have the same number of elements as defined
* in the cv::GComputation protocol (at the moment of its
* construction). Shapes of elements also must conform to protocol
* (e.g. cv::Mat needs to be passed where cv::GMat has been
* declared as input, and so on). Run-time exception is generated
* on type mismatch.
*
* In contrast with regular GCompiled, user can also pass an
* object of type GVideoCapture for a GMat parameter of the parent
* GComputation. The compiled pipeline will start fetching data
* from that GVideoCapture and feeding it into the
* pipeline. Pipeline stops when a GVideoCapture marks end of the
* stream (or when stop() is called).
*
* Passing a regular Mat for a GMat parameter makes it "infinite"
* source -- pipeline may run forever feeding with this Mat until
* stopped explicitly.
*
* Currently only a single GVideoCapture is supported as input. If
* the parent GComputation is declared with multiple input GMat's,
* one of those can be specified as GVideoCapture but all others
* must be regular Mat objects.
*
* Throws if pipeline is already running. Use stop() and then
* setSource() to run the graph on a new video stream.
*
* @note This method is not thread-safe (with respect to the user
* side) at the moment. Protect the access if
* start()/stop()/setSource() may be called on the same object in
* multiple threads in your application.
*
* @param ins vector of inputs to process.
* @sa gin
*/
void setSource(GRunArgs &&ins);
/// @private -- Exclude this function from OpenCV documentation
GAPI_WRAP void setSource(const cv::detail::ExtractArgsCallback& callback);
/**
* @brief Specify an input video stream for a single-input
* computation pipeline.
*
* Throws if pipeline is already running. Use stop() and then
* setSource() to run the graph on a new video stream.
*
* @overload
* @param s a shared pointer to IStreamSource representing the
* input video stream.
*/
void setSource(const gapi::wip::IStreamSource::Ptr& s);
/**
* @brief Constructs and specifies an input video stream for a
* single-input computation pipeline with the given parameters.
*
* Throws if pipeline is already running. Use stop() and then
* setSource() to run the graph on a new video stream.
*
* @overload
* @param args arguments used to contruct and initialize a stream
* source.
*/
template<typename T, typename... Args>
void setSource(Args&&... args) {
setSource(cv::gapi::wip::make_src<T>(std::forward<Args>(args)...));
}
/**
* @brief Start the pipeline execution.
*
* Use pull()/try_pull() to obtain data. Throws an exception if
* a video source was not specified.
*
* setSource() must be called first, even if the pipeline has been
* working already and then stopped (explicitly via stop() or due
* stream completion)
*
* @note This method is not thread-safe (with respect to the user
* side) at the moment. Protect the access if
* start()/stop()/setSource() may be called on the same object in
* multiple threads in your application.
*/
GAPI_WRAP void start();
/**
* @brief Get the next processed frame from the pipeline.
*
* Use gout() to create an output parameter vector.
*
* Output vectors must have the same number of elements as defined
* in the cv::GComputation protocol (at the moment of its
* construction). Shapes of elements also must conform to protocol
* (e.g. cv::Mat needs to be passed where cv::GMat has been
* declared as output, and so on). Run-time exception is generated
* on type mismatch.
*
* This method writes new data into objects passed via output
* vector. If there is no data ready yet, this method blocks. Use
* try_pull() if you need a non-blocking version.
*
* @param outs vector of output parameters to obtain.
* @return true if next result has been obtained,
* false marks end of the stream.
*/
bool pull(cv::GRunArgsP &&outs);
// NB: Used from python
/// @private -- Exclude this function from OpenCV documentation
GAPI_WRAP std::tuple<bool, cv::util::variant<cv::GRunArgs, cv::GOptRunArgs>> pull();
/**
* @brief Get some next available data from the pipeline.
*
* This method takes a vector of cv::optional object. An object is
* assigned to some value if this value is available (ready) at
* the time of the call, and resets the object to empty() if it is
* not.
*
* This is a blocking method which guarantees that some data has
* been written to the output vector on return.
*
* Using this method only makes sense if the graph has
* desynchronized parts (see cv::gapi::desync). If there is no
* desynchronized parts in the graph, the behavior of this
* method is identical to the regular pull() (all data objects are
* produced synchronously in the output vector).
*
* Use gout() to create an output parameter vector.
*
* Output vectors must have the same number of elements as defined
* in the cv::GComputation protocol (at the moment of its
* construction). Shapes of elements also must conform to protocol
* (e.g. cv::optional<cv::Mat> needs to be passed where cv::GMat
* has been declared as output, and so on). Run-time exception is
* generated on type mismatch.
*
* This method writes new data into objects passed via output
* vector. If there is no data ready yet, this method blocks. Use
* try_pull() if you need a non-blocking version.
*
* @param outs vector of output parameters to obtain.
* @return true if next result has been obtained,
* false marks end of the stream.
*
* @sa cv::gapi::desync
*/
bool pull(cv::GOptRunArgsP &&outs);
/**
* @brief Try to get the next processed frame from the pipeline.
*
* Use gout() to create an output parameter vector.
*
* This method writes new data into objects passed via output
* vector. If there is no data ready yet, the output vector
* remains unchanged and false is returned.
*
* @return true if data has been obtained, and false if it was
* not. Note: false here doesn't mark the end of the stream.
*/
bool try_pull(cv::GRunArgsP &&outs);
/**
* @brief Stop (abort) processing the pipeline.
*
* Note - it is not pause but a complete stop. Calling start()
* will cause G-API to start processing the stream from the early beginning.
*
* Throws if the pipeline is not running.
*/
GAPI_WRAP void stop();
/**
* @brief Test if the pipeline is running.
*
* @note This method is not thread-safe (with respect to the user
* side) at the moment. Protect the access if
* start()/stop()/setSource() may be called on the same object in
* multiple threads in your application.
*
* @return true if the current stream is not over yet.
*/
GAPI_WRAP bool running() const;
/// @private
Priv& priv();
/**
* @brief Check if compiled object is valid (non-empty)
*
* @return true if the object is runnable (valid), false otherwise
*/
explicit operator bool () const;
/**
* @brief Vector of metadata this graph was compiled for.
*
* @return Unless _reshape_ is not supported, return value is the
* same vector which was passed to cv::GComputation::compile() to
* produce this compiled object. Otherwise, it is the latest
* metadata vector passed to reshape() (if that call was
* successful).
*/
const GMetaArgs& metas() const; // Meta passed to compile()
/**
* @brief Vector of metadata descriptions of graph outputs
*
* @return vector with formats/resolutions of graph's output
* objects, auto-inferred from input metadata vector by
* operations which form this computation.
*
* @note GCompiled objects produced from the same
* cv::GComputiation graph with different input metas may return
* different values in this vector.
*/
const GMetaArgs& outMetas() const;
protected:
/// @private
std::shared_ptr<Priv> m_priv;
};
/** @} */
namespace gapi {
/**
* @brief This namespace contains G-API functions, structures, and
* symbols related to the Streaming execution mode.
*
* Some of the operations defined in this namespace (e.g. size(),
* BGR(), etc.) can be used in the traditional execution mode too.
*/
namespace streaming {
/**
* @brief Specify queue capacity for streaming execution.
*
* In the streaming mode the pipeline steps are connected with queues
* and this compile argument controls every queue's size.
*/
struct GAPI_EXPORTS_W_SIMPLE queue_capacity
{
GAPI_WRAP
explicit queue_capacity(size_t cap = 1) : capacity(cap) { };
GAPI_PROP_RW
size_t capacity;
};
/** @} */
} // namespace streaming
} // namespace gapi
namespace detail
{
template<> struct CompileArgTag<cv::gapi::streaming::queue_capacity>
{
static const char* tag() { return "gapi.queue_capacity"; }
};
}
}
#endif // OPENCV_GAPI_GSTREAMING_COMPILED_HPP