fast-yolo4/3rdparty/opencv/inc/opencv2/gapi/infer.hpp

715 lines
24 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2021 Intel Corporation
#ifndef OPENCV_GAPI_INFER_HPP
#define OPENCV_GAPI_INFER_HPP
// FIXME: Inference API is currently only available in full mode
#if !defined(GAPI_STANDALONE)
#include <functional>
#include <string> // string
#include <utility> // tuple
#include <type_traits> // is_same, false_type
#include <opencv2/gapi/util/util.hpp> // all_satisfy
#include <opencv2/gapi/util/any.hpp> // any<>
#include <opencv2/gapi/gkernel.hpp> // GKernelType[M], GBackend
#include <opencv2/gapi/garg.hpp> // GArg
#include <opencv2/gapi/gcommon.hpp> // CompileArgTag
#include <opencv2/gapi/gmetaarg.hpp> // GMetaArg
namespace cv {
template<typename, typename> class GNetworkType;
namespace detail {
// Infer ///////////////////////////////////////////////////////////////////////
template<typename T>
struct accepted_infer_types {
static constexpr const auto value =
std::is_same<typename std::decay<T>::type, cv::GMat>::value
|| std::is_same<typename std::decay<T>::type, cv::GFrame>::value;
};
template<typename... Ts>
using valid_infer_types = all_satisfy<accepted_infer_types, Ts...>;
// Infer2 //////////////////////////////////////////////////////////////////////
template<typename, typename>
struct valid_infer2_types;
// Terminal case 1 (50/50 success)
template<typename T>
struct valid_infer2_types< std::tuple<cv::GMat>, std::tuple<T> > {
// By default, Nets are limited to GMat argument types only
// for infer2, every GMat argument may translate to either
// GArray<GMat> or GArray<Rect>. GArray<> part is stripped
// already at this point.
static constexpr const auto value =
std::is_same<typename std::decay<T>::type, cv::GMat>::value
|| std::is_same<typename std::decay<T>::type, cv::Rect>::value;
};
// Terminal case 2 (100% failure)
template<typename... Ts>
struct valid_infer2_types< std::tuple<>, std::tuple<Ts...> >
: public std::false_type {
};
// Terminal case 3 (100% failure)
template<typename... Ns>
struct valid_infer2_types< std::tuple<Ns...>, std::tuple<> >
: public std::false_type {
};
// Recursion -- generic
template<typename... Ns, typename T, typename...Ts>
struct valid_infer2_types< std::tuple<cv::GMat,Ns...>, std::tuple<T,Ts...> > {
static constexpr const auto value =
valid_infer2_types< std::tuple<cv::GMat>, std::tuple<T> >::value
&& valid_infer2_types< std::tuple<Ns...>, std::tuple<Ts...> >::value;
};
// Struct stores network input/output names.
// Used by infer<Generic>
struct InOutInfo
{
std::vector<std::string> in_names;
std::vector<std::string> out_names;
};
template <typename OutT>
class GInferOutputsTyped
{
public:
GInferOutputsTyped() = default;
GInferOutputsTyped(std::shared_ptr<cv::GCall> call)
: m_priv(std::make_shared<Priv>(std::move(call)))
{
}
OutT at(const std::string& name)
{
auto it = m_priv->blobs.find(name);
if (it == m_priv->blobs.end()) {
// FIXME: Avoid modifying GKernel
auto shape = cv::detail::GTypeTraits<OutT>::shape;
m_priv->call->kernel().outShapes.push_back(shape);
m_priv->call->kernel().outCtors.emplace_back(cv::detail::GObtainCtor<OutT>::get());
auto out_idx = static_cast<int>(m_priv->blobs.size());
it = m_priv->blobs.emplace(name,
cv::detail::Yield<OutT>::yield(*(m_priv->call), out_idx)).first;
m_priv->info->out_names.push_back(name);
}
return it->second;
}
private:
struct Priv
{
Priv(std::shared_ptr<cv::GCall> c)
: call(std::move(c)), info(cv::util::any_cast<InOutInfo>(&call->params()))
{
}
std::shared_ptr<cv::GCall> call;
InOutInfo* info = nullptr;
std::unordered_map<std::string, OutT> blobs;
};
std::shared_ptr<Priv> m_priv;
};
template <typename... Ts>
class GInferInputsTyped
{
public:
GInferInputsTyped()
: m_priv(std::make_shared<Priv>())
{
}
template <typename U>
GInferInputsTyped<Ts...>& setInput(const std::string& name, U in)
{
m_priv->blobs.emplace(std::piecewise_construct,
std::forward_as_tuple(name),
std::forward_as_tuple(in));
return *this;
}
using StorageT = cv::util::variant<Ts...>;
StorageT& operator[](const std::string& name) {
return m_priv->blobs[name];
}
using Map = std::unordered_map<std::string, StorageT>;
const Map& getBlobs() const {
return m_priv->blobs;
}
private:
struct Priv
{
std::unordered_map<std::string, StorageT> blobs;
};
std::shared_ptr<Priv> m_priv;
};
template<typename InferT>
std::shared_ptr<cv::GCall> makeCall(const std::string &tag,
std::vector<cv::GArg> &&args,
std::vector<std::string> &&names,
cv::GKinds &&kinds) {
auto call = std::make_shared<cv::GCall>(GKernel{
InferT::id(),
tag,
InferT::getOutMeta,
{}, // outShape will be filled later
std::move(kinds),
{}, // outCtors will be filled later
});
call->setArgs(std::move(args));
call->params() = cv::detail::InOutInfo{std::move(names), {}};
return call;
}
} // namespace detail
// TODO: maybe tuple_wrap_helper from util.hpp may help with this.
// Multiple-return-value network definition (specialized base class)
template<typename K, typename... R, typename... Args>
class GNetworkType<K, std::function<std::tuple<R...>(Args...)> >
{
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R...>;
using Result = OutArgs;
using API = std::function<Result(Args...)>;
using ResultL = std::tuple< cv::GArray<R>... >;
};
// Single-return-value network definition (specialized base class)
template<typename K, typename R, typename... Args>
class GNetworkType<K, std::function<R(Args...)> >
{
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R>;
using Result = R;
using API = std::function<R(Args...)>;
using ResultL = cv::GArray<R>;
};
// InferAPI: Accepts either GMat or GFrame for very individual network's input
template<class Net, class... Ts>
struct InferAPI {
using type = typename std::enable_if
< detail::valid_infer_types<Ts...>::value
&& std::tuple_size<typename Net::InArgs>::value == sizeof...(Ts)
, std::function<typename Net::Result(Ts...)>
>::type;
};
// InferAPIRoi: Accepts a rectangle and either GMat or GFrame
template<class Net, class T>
struct InferAPIRoi {
using type = typename std::enable_if
< detail::valid_infer_types<T>::value
&& std::tuple_size<typename Net::InArgs>::value == 1u
, std::function<typename Net::Result(cv::GOpaque<cv::Rect>, T)>
>::type;
};
// InferAPIList: Accepts a list of rectangles and list of GMat/GFrames;
// crops every input.
template<class Net, class... Ts>
struct InferAPIList {
using type = typename std::enable_if
< detail::valid_infer_types<Ts...>::value
&& std::tuple_size<typename Net::InArgs>::value == sizeof...(Ts)
, std::function<typename Net::ResultL(cv::GArray<cv::Rect>, Ts...)>
>::type;
};
// APIList2 is also template to allow different calling options
// (GArray<cv::Rect> vs GArray<cv::GMat> per input)
template<class Net, typename T, class... Ts>
struct InferAPIList2 {
using type = typename std::enable_if
< detail::valid_infer_types<T>::value &&
cv::detail::valid_infer2_types< typename Net::InArgs
, std::tuple<Ts...> >::value,
std::function<typename Net::ResultL(T, cv::GArray<Ts>...)>
>::type;
};
// Base "Infer" kernel. Note - for whatever network, kernel ID
// is always the same. Different inference calls are distinguished by
// network _tag_ (an extra field in GCall)
//
// getOutMeta is a stub callback collected by G-API kernel subsystem
// automatically. This is a rare case when this callback is defined by
// a particular backend, not by a network itself.
struct GInferBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "InferROI" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferROIBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "Infer list" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferListBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi-list-1"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "Infer list 2" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferList2Base {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi-list-2"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// A generic inference kernel. API (::on()) is fully defined by the Net
// template parameter.
// Acts as a regular kernel in graph (via KernelTypeMedium).
template<typename Net, typename... Args>
struct GInfer final
: public GInferBase
, public detail::KernelTypeMedium< GInfer<Net, Args...>
, typename InferAPI<Net, Args...>::type > {
using GInferBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// A specific roi-inference kernel. API (::on()) is fixed here and
// verified against Net.
template<typename Net, typename T>
struct GInferROI final
: public GInferROIBase
, public detail::KernelTypeMedium< GInferROI<Net, T>
, typename InferAPIRoi<Net, T>::type > {
using GInferROIBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// A generic roi-list inference kernel. API (::on()) is derived from
// the Net template parameter (see more in infer<> overload).
template<typename Net, typename... Args>
struct GInferList final
: public GInferListBase
, public detail::KernelTypeMedium< GInferList<Net, Args...>
, typename InferAPIList<Net, Args...>::type > {
using GInferListBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// An even more generic roi-list inference kernel. API (::on()) is
// derived from the Net template parameter (see more in infer<>
// overload).
// Takes an extra variadic template list to reflect how this network
// was called (with Rects or GMats as array parameters)
template<typename Net, typename T, typename... Args>
struct GInferList2 final
: public GInferList2Base
, public detail::KernelTypeMedium< GInferList2<Net, T, Args...>
, typename InferAPIList2<Net, T, Args...>::type > {
using GInferList2Base::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
/**
* @brief G-API object used to collect network inputs
*/
using GInferInputs = cv::detail::GInferInputsTyped<cv::GMat, cv::GFrame>;
/**
* @brief G-API object used to collect the list of network inputs
*/
using GInferListInputs = cv::detail::GInferInputsTyped<cv::GArray<cv::GMat>, cv::GArray<cv::Rect>>;
/**
* @brief G-API object used to collect network outputs
*/
using GInferOutputs = cv::detail::GInferOutputsTyped<cv::GMat>;
/**
* @brief G-API object used to collect the list of network outputs
*/
using GInferListOutputs = cv::detail::GInferOutputsTyped<cv::GArray<cv::GMat>>;
namespace detail {
void inline unpackBlobs(const cv::GInferInputs::Map& blobs,
std::vector<cv::GArg>& args,
std::vector<std::string>& names,
cv::GKinds& kinds)
{
for (auto&& p : blobs) {
names.emplace_back(p.first);
switch (p.second.index()) {
case cv::GInferInputs::StorageT::index_of<cv::GMat>():
args.emplace_back(cv::util::get<cv::GMat>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_MAT);
break;
case cv::GInferInputs::StorageT::index_of<cv::GFrame>():
args.emplace_back(cv::util::get<cv::GFrame>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_UNKNOWN);
break;
default:
GAPI_Assert(false);
}
}
}
template <typename InferType>
struct InferROITraits;
template <>
struct InferROITraits<GInferROIBase>
{
using outType = cv::GInferOutputs;
using inType = cv::GOpaque<cv::Rect>;
};
template <>
struct InferROITraits<GInferListBase>
{
using outType = cv::GInferListOutputs;
using inType = cv::GArray<cv::Rect>;
};
template<typename InferType>
typename InferROITraits<InferType>::outType
inferGenericROI(const std::string& tag,
const typename InferROITraits<InferType>::inType& in,
const cv::GInferInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
args.emplace_back(in);
kinds.emplace_back(cv::detail::OpaqueKind::CV_RECT);
unpackBlobs(inputs.getBlobs(), args, names, kinds);
auto call = cv::detail::makeCall<InferType>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return {std::move(call)};
}
} // namespace detail
} // namespace cv
// FIXME: Probably the <API> signature makes a function/tuple/function round-trip
#define G_API_NET(Class, API, Tag) \
struct Class final: public cv::GNetworkType<Class, std::function API> { \
static constexpr const char * tag() { return Tag; } \
}
namespace cv {
namespace gapi {
/** @brief Calculates response for the specified network (template
* parameter) for the specified region in the source image.
* Currently expects a single-input network only.
*
* @tparam A network type defined with G_API_NET() macro.
* @param in input image where to take ROI from.
* @param roi an object describing the region of interest
* in the source image. May be calculated in the same graph dynamically.
* @return an object of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* objects of appropriate type is returned.
* @sa G_API_NET()
*/
template<typename Net, typename T>
typename Net::Result infer(cv::GOpaque<cv::Rect> roi, T in) {
return GInferROI<Net, T>::on(roi, in);
}
/** @brief Calculates responses for the specified network (template
* parameter) for every region in the source image.
*
* @tparam A network type defined with G_API_NET() macro.
* @param roi a list of rectangles describing regions of interest
* in the source image. Usually an output of object detector or tracker.
* @param args network's input parameters as specified in G_API_NET() macro.
* NOTE: verified to work reliably with 1-input topologies only.
* @return a list of objects of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* GArray<> objects is returned with the appropriate types inside.
* @sa G_API_NET()
*/
template<typename Net, typename... Args>
typename Net::ResultL infer(cv::GArray<cv::Rect> roi, Args&&... args) {
return GInferList<Net, Args...>::on(roi, std::forward<Args>(args)...);
}
/** @brief Calculates responses for the specified network (template
* parameter) for every region in the source image, extended version.
*
* @tparam A network type defined with G_API_NET() macro.
* @param image A source image containing regions of interest
* @param args GArray<> objects of cv::Rect or cv::GMat, one per every
* network input:
* - If a cv::GArray<cv::Rect> is passed, the appropriate
* regions are taken from `image` and preprocessed to this particular
* network input;
* - If a cv::GArray<cv::GMat> is passed, the underlying data traited
* as tensor (no automatic preprocessing happen).
* @return a list of objects of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* GArray<> objects is returned with the appropriate types inside.
* @sa G_API_NET()
*/
template<typename Net, typename T, typename... Args>
typename Net::ResultL infer2(T image, cv::GArray<Args>... args) {
// FIXME: Declared as "2" because in the current form it steals
// overloads from the regular infer
return GInferList2<Net, T, Args...>::on(image, args...);
}
/**
* @brief Calculates response for the specified network (template
* parameter) given the input data.
*
* @tparam A network type defined with G_API_NET() macro.
* @param args network's input parameters as specified in G_API_NET() macro.
* @return an object of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* objects of appropriate type is returned.
* @sa G_API_NET()
*/
template<typename Net, typename... Args>
typename Net::Result infer(Args&&... args) {
return GInfer<Net, Args...>::on(std::forward<Args>(args)...);
}
/**
* @brief Generic network type: input and output layers are configured dynamically at runtime
*
* Unlike the network types defined with G_API_NET macro, this one
* doesn't fix number of network inputs and outputs at the compilation stage
* thus providing user with an opportunity to program them in runtime.
*/
struct Generic { };
/**
* @brief Calculates response for generic network
*
* @param tag a network tag
* @param inputs networks's inputs
* @return a GInferOutputs
*/
template<typename T = Generic> cv::GInferOutputs
infer(const std::string& tag, const cv::GInferInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
cv::detail::unpackBlobs(inputs.getBlobs(), args, names, kinds);
auto call = cv::detail::makeCall<GInferBase>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return cv::GInferOutputs{std::move(call)};
}
/** @brief Calculates response for the generic network
* for the specified region in the source image.
* Currently expects a single-input network only.
*
* @param tag a network tag
* @param roi a an object describing the region of interest
* in the source image. May be calculated in the same graph dynamically.
* @param inputs networks's inputs
* @return a cv::GInferOutputs
*/
template<typename T = Generic> cv::GInferOutputs
infer(const std::string& tag, const cv::GOpaque<cv::Rect>& roi, const cv::GInferInputs& inputs)
{
return cv::detail::inferGenericROI<GInferROIBase>(tag, roi, inputs);
}
/** @brief Calculates responses for the specified network
* for every region in the source image.
*
* @param tag a network tag
* @param rois a list of rectangles describing regions of interest
* in the source image. Usually an output of object detector or tracker.
* @param inputs networks's inputs
* @return a cv::GInferListOutputs
*/
template<typename T = Generic> cv::GInferListOutputs
infer(const std::string& tag, const cv::GArray<cv::Rect>& rois, const cv::GInferInputs& inputs)
{
return cv::detail::inferGenericROI<GInferListBase>(tag, rois, inputs);
}
/** @brief Calculates responses for the specified network
* for every region in the source image, extended version.
*
* @param tag a network tag
* @param in a source image containing regions of interest.
* @param inputs networks's inputs
* @return a cv::GInferListOutputs
*/
template<typename T = Generic, typename Input>
typename std::enable_if<cv::detail::accepted_infer_types<Input>::value, cv::GInferListOutputs>::type
infer2(const std::string& tag,
const Input& in,
const cv::GInferListInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
args.emplace_back(in);
auto k = cv::detail::GOpaqueTraits<Input>::kind;
kinds.emplace_back(k);
for (auto&& p : inputs.getBlobs()) {
names.emplace_back(p.first);
switch (p.second.index()) {
case cv::GInferListInputs::StorageT::index_of<cv::GArray<cv::GMat>>():
args.emplace_back(cv::util::get<cv::GArray<cv::GMat>>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_MAT);
break;
case cv::GInferListInputs::StorageT::index_of<cv::GArray<cv::Rect>>():
args.emplace_back(cv::util::get<cv::GArray<cv::Rect>>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_RECT);
break;
default:
GAPI_Assert(false);
}
}
auto call = cv::detail::makeCall<GInferList2Base>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return cv::GInferListOutputs{std::move(call)};
}
} // namespace gapi
} // namespace cv
#endif // GAPI_STANDALONE
namespace cv {
namespace gapi {
// Note: the below code _is_ part of STANDALONE build,
// just to make our compiler code compileable.
// A type-erased form of network parameters.
// Similar to how a type-erased GKernel is represented and used.
/// @private
struct GAPI_EXPORTS_W_SIMPLE GNetParam {
std::string tag; // FIXME: const?
GBackend backend; // Specifies the execution model
util::any params; // Backend-interpreted parameter structure
};
/** \addtogroup gapi_compile_args
* @{
*/
/**
* @brief A container class for network configurations. Similar to
* GKernelPackage. Use cv::gapi::networks() to construct this object.
*
* @sa cv::gapi::networks
*/
struct GAPI_EXPORTS_W_SIMPLE GNetPackage {
GAPI_WRAP GNetPackage() = default;
GAPI_WRAP explicit GNetPackage(std::vector<GNetParam> nets);
explicit GNetPackage(std::initializer_list<GNetParam> ii);
std::vector<GBackend> backends() const;
std::vector<GNetParam> networks;
};
/** @} gapi_compile_args */
} // namespace gapi
namespace detail {
template<typename T>
gapi::GNetParam strip(T&& t) {
return gapi::GNetParam { t.tag()
, t.backend()
, t.params()
};
}
template<> struct CompileArgTag<cv::gapi::GNetPackage> {
static const char* tag() { return "gapi.net_package"; }
};
} // namespace cv::detail
namespace gapi {
template<typename... Args>
cv::gapi::GNetPackage networks(Args&&... args) {
return cv::gapi::GNetPackage({ cv::detail::strip(args)... });
}
inline cv::gapi::GNetPackage& operator += ( cv::gapi::GNetPackage& lhs,
const cv::gapi::GNetPackage& rhs) {
lhs.networks.reserve(lhs.networks.size() + rhs.networks.size());
lhs.networks.insert(lhs.networks.end(), rhs.networks.begin(), rhs.networks.end());
return lhs;
}
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_HPP