fast-yolo4/3rdparty/opencv/inc/opencv2/gapi/util/variant.hpp

659 lines
26 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_VARIANT_HPP
#define OPENCV_GAPI_UTIL_VARIANT_HPP
#include <array>
#include <type_traits>
#include <opencv2/gapi/util/compiler_hints.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/util/util.hpp> // max_of_t
#include <opencv2/gapi/util/type_traits.hpp>
// A poor man's `variant` implementation, incompletely modeled against C++17 spec.
namespace cv
{
namespace util
{
namespace detail
{
template<std::size_t I, typename Target, typename First, typename... Remaining>
struct type_list_index_helper
{
static const constexpr bool is_same = std::is_same<Target, First>::value;
static const constexpr std::size_t value =
std::conditional<is_same, std::integral_constant<std::size_t, I>, type_list_index_helper<I + 1, Target, Remaining...>>::type::value;
};
template<std::size_t I, typename Target, typename First>
struct type_list_index_helper<I, Target, First>
{
static_assert(std::is_same<Target, First>::value, "Type not found");
static const constexpr std::size_t value = I;
};
}
template<typename Target, typename... Types>
struct type_list_index
{
static const constexpr std::size_t value = detail::type_list_index_helper<0, Target, Types...>::value;
};
template<std::size_t Index, class... Types >
struct type_list_element
{
using type = typename std::tuple_element<Index, std::tuple<Types...> >::type;
};
class bad_variant_access: public std::exception
{
public:
virtual const char *what() const noexcept override
{
return "Bad variant access";
}
};
// Interface ///////////////////////////////////////////////////////////////
struct monostate {};
inline bool operator==(const util::monostate&, const util::monostate&)
{
return true;
}
template<typename... Ts> // FIXME: no references, arrays, and void
class variant
{
// FIXME: Replace with std::aligned_union after gcc4.8 support is dropped
static constexpr const std::size_t S = cv::detail::max_of_t<sizeof(Ts)...>::value;
static constexpr const std::size_t A = cv::detail::max_of_t<alignof(Ts)...>::value;
using Memory = typename std::aligned_storage<S, A>::type[1];
template<typename T> struct cctr_h {
static void help(Memory memory, const Memory from) {
new (memory) T(*reinterpret_cast<const T*>(from));
}
};
template<typename T> struct mctr_h {
static void help(Memory memory, void *pval) {
new (memory) T(std::move(*reinterpret_cast<T*>(pval)));
}
};
//FIXME: unify with cctr_h and mctr_h
template<typename T> struct cnvrt_ctor_h {
static void help(Memory memory, void* from) {
using util::decay_t;
new (memory) decay_t<T>(std::forward<T>(*reinterpret_cast<decay_t<T>*>(from)));
}
};
template<typename T> struct copy_h {
static void help(Memory to, const Memory from) {
*reinterpret_cast<T*>(to) = *reinterpret_cast<const T*>(from);
}
};
template<typename T> struct move_h {
static void help(Memory to, Memory from) {
*reinterpret_cast<T*>(to) = std::move(*reinterpret_cast<T*>(from));
}
};
//FIXME: unify with copy_h and move_h
template<typename T> struct cnvrt_assign_h {
static void help(Memory to, void* from) {
using util::decay_t;
*reinterpret_cast<decay_t<T>*>(to) = std::forward<T>(*reinterpret_cast<decay_t<T>*>(from));
}
};
template<typename T> struct swap_h {
static void help(Memory to, Memory from) {
std::swap(*reinterpret_cast<T*>(to), *reinterpret_cast<T*>(from));
}
};
template<typename T> struct dtor_h {
static void help(Memory memory) {
(void) memory; // MSCV warning
reinterpret_cast<T*>(memory)->~T();
}
};
template<typename T> struct equal_h {
static bool help(const Memory lhs, const Memory rhs) {
const T& t_lhs = *reinterpret_cast<const T*>(lhs);
const T& t_rhs = *reinterpret_cast<const T*>(rhs);
return t_lhs == t_rhs;
}
};
typedef void (*CCtr) (Memory, const Memory); // Copy c-tor (variant)
typedef void (*MCtr) (Memory, void*); // Generic move c-tor
typedef void (*Copy) (Memory, const Memory); // Copy assignment
typedef void (*Move) (Memory, Memory); // Move assignment
typedef void (*Swap) (Memory, Memory); // Swap
typedef void (*Dtor) (Memory); // Destructor
using cnvrt_assgn_t = void (*) (Memory, void*); // Converting assignment (via std::forward)
using cnvrt_ctor_t = void (*) (Memory, void*); // Converting constructor (via std::forward)
typedef bool (*Equal)(const Memory, const Memory); // Equality test (external)
static constexpr std::array<CCtr, sizeof...(Ts)> cctrs(){ return {{(&cctr_h<Ts>::help)...}};}
static constexpr std::array<MCtr, sizeof...(Ts)> mctrs(){ return {{(&mctr_h<Ts>::help)...}};}
static constexpr std::array<Copy, sizeof...(Ts)> cpyrs(){ return {{(&copy_h<Ts>::help)...}};}
static constexpr std::array<Move, sizeof...(Ts)> mvers(){ return {{(&move_h<Ts>::help)...}};}
static constexpr std::array<Swap, sizeof...(Ts)> swprs(){ return {{(&swap_h<Ts>::help)...}};}
static constexpr std::array<Dtor, sizeof...(Ts)> dtors(){ return {{(&dtor_h<Ts>::help)...}};}
template<bool cond, typename T>
struct conditional_ref : std::conditional<cond, typename std::remove_reference<T>::type&, typename std::remove_reference<T>::type > {};
template<bool cond, typename T>
using conditional_ref_t = typename conditional_ref<cond, T>::type;
template<bool is_lvalue_arg>
static constexpr std::array<cnvrt_assgn_t, sizeof...(Ts)> cnvrt_assgnrs(){
return {{(&cnvrt_assign_h<conditional_ref_t<is_lvalue_arg,Ts>>::help)...}};
}
template<bool is_lvalue_arg>
static constexpr std::array<cnvrt_ctor_t, sizeof...(Ts)> cnvrt_ctors(){
return {{(&cnvrt_ctor_h<conditional_ref_t<is_lvalue_arg,Ts>>::help)...}};
}
std::size_t m_index = 0;
protected:
template<typename T, typename... Us> friend T& get(variant<Us...> &v);
template<typename T, typename... Us> friend const T& get(const variant<Us...> &v);
template<typename T, typename... Us> friend T* get_if(variant<Us...> *v) noexcept;
template<typename T, typename... Us> friend const T* get_if(const variant<Us...> *v) noexcept;
template<typename... Us> friend bool operator==(const variant<Us...> &lhs,
const variant<Us...> &rhs);
Memory memory;
public:
// Constructors
variant() noexcept;
variant(const variant& other);
variant(variant&& other) noexcept;
// are_different_t is a SFINAE trick to avoid variant(T &&t) with T=variant
// for some reason, this version is called instead of variant(variant&& o) when
// variant is used in STL containers (examples: vector assignment).
template<
typename T,
typename = util::are_different_t<variant, T>
>
explicit variant(T&& t);
// template<class T, class... Args> explicit variant(Args&&... args);
// FIXME: other constructors
// Destructor
~variant();
// Assignment
variant& operator=(const variant& rhs);
variant& operator=(variant &&rhs) noexcept;
// SFINAE trick to avoid operator=(T&&) with T=variant<>, see comment above
template<
typename T,
typename = util::are_different_t<variant, T>
>
variant& operator=(T&& t) noexcept;
// Observers
std::size_t index() const noexcept;
// FIXME: valueless_by_exception()
// Modifiers
// FIXME: emplace()
void swap(variant &rhs) noexcept;
// Non-C++17x!
template<typename T> static constexpr std::size_t index_of();
};
// FIMXE: visit
template<typename T, typename... Types>
T* get_if(util::variant<Types...>* v) noexcept;
template<typename T, typename... Types>
const T* get_if(const util::variant<Types...>* v) noexcept;
template<typename T, typename... Types>
T& get(util::variant<Types...> &v);
template<typename T, typename... Types>
const T& get(const util::variant<Types...> &v);
template<std::size_t Index, typename... Types>
typename util::type_list_element<Index, Types...>::type& get(util::variant<Types...> &v);
template<std::size_t Index, typename... Types>
const typename util::type_list_element<Index, Types...>::type& get(const util::variant<Types...> &v);
template<typename T, typename... Types>
bool holds_alternative(const util::variant<Types...> &v) noexcept;
// Visitor
namespace detail
{
struct visitor_interface {};
// Class `visitor_return_type_deduction_helper`
// introduces solution for deduction `return_type` in `visit` function in common way
// for both Lambda and class Visitor and keep one interface invocation point: `visit` only
// his helper class is required to unify return_type deduction mechanism because
// for Lambda it is possible to take type of `decltype(visitor(get<0>(var)))`
// but for class Visitor there is no operator() in base case,
// because it provides `operator() (std::size_t index, ...)`
// So `visitor_return_type_deduction_helper` expose `operator()`
// uses only for class Visitor only for deduction `return type` in visit()
template<typename R>
struct visitor_return_type_deduction_helper
{
using return_type = R;
// to be used in Lambda return type deduction context only
template<typename T>
return_type operator() (T&&);
};
}
// Special purpose `static_visitor` can receive additional arguments
template<typename R, typename Impl>
struct static_visitor : public detail::visitor_interface,
public detail::visitor_return_type_deduction_helper<R> {
// assign responsibility for return type deduction to helper class
using return_type = typename detail::visitor_return_type_deduction_helper<R>::return_type;
using detail::visitor_return_type_deduction_helper<R>::operator();
friend Impl;
template<typename VariantValue, typename ...Args>
return_type operator() (std::size_t index, VariantValue&& value, Args&& ...args)
{
suppress_unused_warning(index);
return static_cast<Impl*>(this)-> visit(
std::forward<VariantValue>(value),
std::forward<Args>(args)...);
}
};
// Special purpose `static_indexed_visitor` can receive additional arguments
// And make forwarding current variant index as runtime function argument to its `Impl`
template<typename R, typename Impl>
struct static_indexed_visitor : public detail::visitor_interface,
public detail::visitor_return_type_deduction_helper<R> {
// assign responsibility for return type deduction to helper class
using return_type = typename detail::visitor_return_type_deduction_helper<R>::return_type;
using detail::visitor_return_type_deduction_helper<R>::operator();
friend Impl;
template<typename VariantValue, typename ...Args>
return_type operator() (std::size_t Index, VariantValue&& value, Args&& ...args)
{
return static_cast<Impl*>(this)-> visit(Index,
std::forward<VariantValue>(value),
std::forward<Args>(args)...);
}
};
template <class T>
struct variant_size;
template <class... Types>
struct variant_size<util::variant<Types...>>
: std::integral_constant<std::size_t, sizeof...(Types)> { };
// FIXME: T&&, const TT&& versions.
// Implementation //////////////////////////////////////////////////////////
template<typename... Ts>
variant<Ts...>::variant() noexcept
{
typedef typename std::tuple_element<0, std::tuple<Ts...> >::type TFirst;
new (memory) TFirst();
}
template<typename... Ts>
variant<Ts...>::variant(const variant &other)
: m_index(other.m_index)
{
(cctrs()[m_index])(memory, other.memory);
}
template<typename... Ts>
variant<Ts...>::variant(variant &&other) noexcept
: m_index(other.m_index)
{
(mctrs()[m_index])(memory, other.memory);
}
template<typename... Ts>
template<class T, typename>
variant<Ts...>::variant(T&& t)
: m_index(util::type_list_index<util::decay_t<T>, Ts...>::value)
{
const constexpr bool is_lvalue_arg = std::is_lvalue_reference<T>::value;
(cnvrt_ctors<is_lvalue_arg>()[m_index])(memory, const_cast<util::decay_t<T> *>(&t));
}
template<typename... Ts>
variant<Ts...>::~variant()
{
(dtors()[m_index])(memory);
}
template<typename... Ts>
variant<Ts...>& variant<Ts...>::operator=(const variant<Ts...> &rhs)
{
if (m_index != rhs.m_index)
{
(dtors()[ m_index])(memory);
(cctrs()[rhs.m_index])(memory, rhs.memory);
m_index = rhs.m_index;
}
else
{
(cpyrs()[rhs.m_index])(memory, rhs.memory);
}
return *this;
}
template<typename... Ts>
variant<Ts...>& variant<Ts...>::operator=(variant<Ts...> &&rhs) noexcept
{
if (m_index != rhs.m_index)
{
(dtors()[ m_index])(memory);
(mctrs()[rhs.m_index])(memory, rhs.memory);
m_index = rhs.m_index;
}
else
{
(mvers()[rhs.m_index])(memory, rhs.memory);
}
return *this;
}
template<typename... Ts>
template<typename T, typename>
variant<Ts...>& variant<Ts...>::operator=(T&& t) noexcept
{
using decayed_t = util::decay_t<T>;
// FIXME: No version with implicit type conversion available!
const constexpr std::size_t t_index =
util::type_list_index<decayed_t, Ts...>::value;
const constexpr bool is_lvalue_arg = std::is_lvalue_reference<T>::value;
if (t_index != m_index)
{
(dtors()[m_index])(memory);
(cnvrt_ctors<is_lvalue_arg>()[t_index])(memory, &t);
m_index = t_index;
}
else
{
(cnvrt_assgnrs<is_lvalue_arg>()[m_index])(memory, &t);
}
return *this;
}
template<typename... Ts>
std::size_t util::variant<Ts...>::index() const noexcept
{
return m_index;
}
template<typename... Ts>
void variant<Ts...>::swap(variant<Ts...> &rhs) noexcept
{
if (m_index == rhs.index())
{
(swprs()[m_index](memory, rhs.memory));
}
else
{
variant<Ts...> tmp(std::move(*this));
*this = std::move(rhs);
rhs = std::move(tmp);
}
}
template<typename... Ts>
template<typename T>
constexpr std::size_t variant<Ts...>::index_of()
{
return util::type_list_index<T, Ts...>::value; // FIXME: tests!
}
template<typename T, typename... Types>
T* get_if(util::variant<Types...>* v) noexcept
{
const constexpr std::size_t t_index =
util::type_list_index<T, Types...>::value;
if (v && v->index() == t_index)
return (T*)(&v->memory); // workaround for ICC 2019
// original code: return reinterpret_cast<T&>(v.memory);
return nullptr;
}
template<typename T, typename... Types>
const T* get_if(const util::variant<Types...>* v) noexcept
{
const constexpr std::size_t t_index =
util::type_list_index<T, Types...>::value;
if (v && v->index() == t_index)
return (const T*)(&v->memory); // workaround for ICC 2019
// original code: return reinterpret_cast<const T&>(v.memory);
return nullptr;
}
template<typename T, typename... Types>
T& get(util::variant<Types...> &v)
{
if (auto* p = get_if<T>(&v))
return *p;
else
throw_error(bad_variant_access());
}
template<typename T, typename... Types>
const T& get(const util::variant<Types...> &v)
{
if (auto* p = get_if<T>(&v))
return *p;
else
throw_error(bad_variant_access());
}
template<std::size_t Index, typename... Types>
typename util::type_list_element<Index, Types...>::type& get(util::variant<Types...> &v)
{
using ReturnType = typename util::type_list_element<Index, Types...>::type;
return const_cast<ReturnType&>(get<Index, Types...>(static_cast<const util::variant<Types...> &>(v)));
}
template<std::size_t Index, typename... Types>
const typename util::type_list_element<Index, Types...>::type& get(const util::variant<Types...> &v)
{
static_assert(Index < sizeof...(Types),
"`Index` it out of bound of `util::variant` type list");
using ReturnType = typename util::type_list_element<Index, Types...>::type;
return get<ReturnType>(v);
}
template<typename T, typename... Types>
bool holds_alternative(const util::variant<Types...> &v) noexcept
{
return v.index() == util::variant<Types...>::template index_of<T>();
}
template<typename... Us> bool operator==(const variant<Us...> &lhs,
const variant<Us...> &rhs)
{
using V = variant<Us...>;
// Instantiate table only here since it requires operator== for <Us...>
// <Us...> should have operator== only if this one is used, not in general
static const std::array<typename V::Equal, sizeof...(Us)> eqs = {
{(&V::template equal_h<Us>::help)...}
};
if (lhs.index() != rhs.index())
return false;
return (eqs[lhs.index()])(lhs.memory, rhs.memory);
}
template<typename... Us> bool operator!=(const variant<Us...> &lhs,
const variant<Us...> &rhs)
{
return !(lhs == rhs);
}
namespace detail
{
// terminate recursion implementation for `non-void` ReturnType
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, typename... VisitorArgs>
ReturnType apply_visitor_impl(Visitor&&, Variant&,
std::true_type, std::false_type,
VisitorArgs&& ...)
{
return {};
}
// terminate recursion implementation for `void` ReturnType
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, typename... VisitorArgs>
void apply_visitor_impl(Visitor&&, Variant&,
std::true_type, std::true_type,
VisitorArgs&& ...)
{
}
// Intermediate resursion processor for Lambda Visitors
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, bool no_return_value, typename... VisitorArgs>
typename std::enable_if<!std::is_base_of<visitor_interface, typename std::decay<Visitor>::type>::value, ReturnType>::type
apply_visitor_impl(Visitor&& visitor, Variant&& v, std::false_type not_processed,
std::integral_constant<bool, no_return_value> should_no_return,
VisitorArgs&& ...args)
{
static_assert(std::is_same<ReturnType, decltype(visitor(get<CurIndex>(v)))>::value,
"Different `ReturnType`s detected! All `Visitor::visit` or `overload_lamba_set`"
" must return the same type");
suppress_unused_warning(not_processed);
if (v.index() == CurIndex)
{
return visitor.operator()(get<CurIndex>(v), std::forward<VisitorArgs>(args)... );
}
using is_variant_processed_t = std::integral_constant<bool, CurIndex + 1 >= ElemCount>;
return apply_visitor_impl<ReturnType, CurIndex +1, ElemCount>(
std::forward<Visitor>(visitor),
std::forward<Variant>(v),
is_variant_processed_t{},
should_no_return,
std::forward<VisitorArgs>(args)...);
}
//Visual Studio 2014 compilation fix: cast visitor to base class before invoke operator()
template<std::size_t CurIndex, typename ReturnType, typename Visitor, class Value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<static_visitor<ReturnType, typename std::decay<Visitor>::type>,
typename std::decay<Visitor>::type>::value, ReturnType>::type
invoke_class_visitor(Visitor& visitor, Value&& v, VisitorArgs&&...args)
{
return static_cast<static_visitor<ReturnType, typename std::decay<Visitor>::type>&>(visitor).operator() (CurIndex, std::forward<Value>(v), std::forward<VisitorArgs>(args)... );
}
//Visual Studio 2014 compilation fix: cast visitor to base class before invoke operator()
template<std::size_t CurIndex, typename ReturnType, typename Visitor, class Value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<static_indexed_visitor<ReturnType, typename std::decay<Visitor>::type>,
typename std::decay<Visitor>::type>::value, ReturnType>::type
invoke_class_visitor(Visitor& visitor, Value&& v, VisitorArgs&&...args)
{
return static_cast<static_indexed_visitor<ReturnType, typename std::decay<Visitor>::type>&>(visitor).operator() (CurIndex, std::forward<Value>(v), std::forward<VisitorArgs>(args)... );
}
// Intermediate recursion processor for special case `visitor_interface` derived Visitors
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, bool no_return_value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<visitor_interface, typename std::decay<Visitor>::type>::value, ReturnType>::type
apply_visitor_impl(Visitor&& visitor, Variant&& v, std::false_type not_processed,
std::integral_constant<bool, no_return_value> should_no_return,
VisitorArgs&& ...args)
{
static_assert(std::is_same<ReturnType, decltype(visitor(get<CurIndex>(v)))>::value,
"Different `ReturnType`s detected! All `Visitor::visit` or `overload_lamba_set`"
" must return the same type");
suppress_unused_warning(not_processed);
if (v.index() == CurIndex)
{
return invoke_class_visitor<CurIndex, ReturnType>(visitor, get<CurIndex>(v), std::forward<VisitorArgs>(args)... );
}
using is_variant_processed_t = std::integral_constant<bool, CurIndex + 1 >= ElemCount>;
return apply_visitor_impl<ReturnType, CurIndex +1, ElemCount>(
std::forward<Visitor>(visitor),
std::forward<Variant>(v),
is_variant_processed_t{},
should_no_return,
std::forward<VisitorArgs>(args)...);
}
} // namespace detail
template<typename Visitor, typename Variant, typename... VisitorArg>
auto visit(Visitor &visitor, const Variant& var, VisitorArg &&...args) -> decltype(visitor(get<0>(var)))
{
constexpr std::size_t varsize = util::variant_size<Variant>::value;
static_assert(varsize != 0, "utils::variant must contains one type at least ");
using is_variant_processed_t = std::false_type;
using ReturnType = decltype(visitor(get<0>(var)));
using return_t = std::is_same<ReturnType, void>;
return detail::apply_visitor_impl<ReturnType, 0, varsize, Visitor>(
std::forward<Visitor>(visitor),
var, is_variant_processed_t{},
return_t{},
std::forward<VisitorArg>(args)...);
}
template<typename Visitor, typename Variant>
auto visit(Visitor&& visitor, const Variant& var) -> decltype(visitor(get<0>(var)))
{
constexpr std::size_t varsize = util::variant_size<Variant>::value;
static_assert(varsize != 0, "utils::variant must contains one type at least ");
using is_variant_processed_t = std::false_type;
using ReturnType = decltype(visitor(get<0>(var)));
using return_t = std::is_same<ReturnType, void>;
return detail::apply_visitor_impl<ReturnType, 0, varsize, Visitor>(
std::forward<Visitor>(visitor),
var, is_variant_processed_t{},
return_t{});
}
} // namespace util
} // namespace cv
#endif // OPENCV_GAPI_UTIL_VARIANT_HPP