fast-yolo4/3rdparty/opencv/inc/opencv2/rgbd/large_kinfu.hpp

147 lines
5.2 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this
// module's directory
#ifndef __OPENCV_RGBD_LARGEKINFU_HPP__
#define __OPENCV_RGBD_LARGEKINFU_HPP__
#include <opencv2/rgbd/volume.hpp>
#include "opencv2/core.hpp"
#include "opencv2/core/affine.hpp"
namespace cv
{
namespace large_kinfu
{
struct CV_EXPORTS_W Params
{
/** @brief Default parameters
A set of parameters which provides better model quality, can be very slow.
*/
CV_WRAP static Ptr<Params> defaultParams();
/** @brief Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.
*/
CV_WRAP static Ptr<Params> coarseParams();
/** @brief HashTSDF parameters
A set of parameters suitable for use with HashTSDFVolume
*/
CV_WRAP static Ptr<Params> hashTSDFParams(bool isCoarse);
/** @brief frame size in pixels */
CV_PROP_RW Size frameSize;
/** @brief camera intrinsics */
CV_PROP_RW Matx33f intr;
/** @brief rgb camera intrinsics */
CV_PROP_RW Matx33f rgb_intr;
/** @brief pre-scale per 1 meter for input values
Typical values are:
* 5000 per 1 meter for the 16-bit PNG files of TUM database
* 1000 per 1 meter for Kinect 2 device
* 1 per 1 meter for the 32-bit float images in the ROS bag files
*/
CV_PROP_RW float depthFactor;
/** @brief Depth sigma in meters for bilateral smooth */
CV_PROP_RW float bilateral_sigma_depth;
/** @brief Spatial sigma in pixels for bilateral smooth */
CV_PROP_RW float bilateral_sigma_spatial;
/** @brief Kernel size in pixels for bilateral smooth */
CV_PROP_RW int bilateral_kernel_size;
/** @brief Number of pyramid levels for ICP */
CV_PROP_RW int pyramidLevels;
/** @brief Minimal camera movement in meters
Integrate new depth frame only if camera movement exceeds this value.
*/
CV_PROP_RW float tsdf_min_camera_movement;
/** @brief light pose for rendering in meters */
CV_PROP_RW Vec3f lightPose;
/** @brief distance theshold for ICP in meters */
CV_PROP_RW float icpDistThresh;
/** @brief angle threshold for ICP in radians */
CV_PROP_RW float icpAngleThresh;
/** @brief number of ICP iterations for each pyramid level */
CV_PROP_RW std::vector<int> icpIterations;
/** @brief Threshold for depth truncation in meters
All depth values beyond this threshold will be set to zero
*/
CV_PROP_RW float truncateThreshold;
/** @brief Volume parameters
*/
kinfu::VolumeParams volumeParams;
};
/** @brief Large Scale Dense Depth Fusion implementation
This class implements a 3d reconstruction algorithm for larger environments using
Spatially hashed TSDF volume "Submaps".
It also runs a periodic posegraph optimization to minimize drift in tracking over long sequences.
Currently the algorithm does not implement a relocalization or loop closure module.
Potentially a Bag of words implementation or RGBD relocalization as described in
Glocker et al. ISMAR 2013 will be implemented
It takes a sequence of depth images taken from depth sensor
(or any depth images source such as stereo camera matching algorithm or even raymarching
renderer). The output can be obtained as a vector of points and their normals or can be
Phong-rendered from given camera pose.
An internal representation of a model is a spatially hashed voxel cube that stores TSDF values
which represent the distance to the closest surface (for details read the @cite kinectfusion article
about TSDF). There is no interface to that representation yet.
For posegraph optimization, a Submap abstraction over the Volume class is created.
New submaps are added to the model when there is low visibility overlap between current viewing frustrum
and the existing volume/model. Multiple submaps are simultaneously tracked and a posegraph is created and
optimized periodically.
LargeKinfu does not use any OpenCL acceleration yet.
To enable or disable it explicitly use cv::setUseOptimized() or cv::ocl::setUseOpenCL().
This implementation is inspired from Kintinuous, InfiniTAM and other SOTA algorithms
You need to set the OPENCV_ENABLE_NONFREE option in CMake to use KinectFusion.
*/
class CV_EXPORTS_W LargeKinfu
{
public:
CV_WRAP static Ptr<LargeKinfu> create(const Ptr<Params>& _params);
virtual ~LargeKinfu() = default;
virtual const Params& getParams() const = 0;
CV_WRAP virtual void render(OutputArray image) const = 0;
CV_WRAP virtual void render(OutputArray image, const Matx44f& cameraPose) const = 0;
CV_WRAP virtual void getCloud(OutputArray points, OutputArray normals) const = 0;
CV_WRAP virtual void getPoints(OutputArray points) const = 0;
CV_WRAP virtual void getNormals(InputArray points, OutputArray normals) const = 0;
CV_WRAP virtual void reset() = 0;
virtual const Affine3f getPose() const = 0;
CV_WRAP virtual bool update(InputArray depth) = 0;
};
} // namespace large_kinfu
} // namespace cv
#endif