277 lines
14 KiB
C++
277 lines
14 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#ifndef __OPENCV_STEREO_HPP__
|
||
|
#define __OPENCV_STEREO_HPP__
|
||
|
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/stereo/descriptor.hpp"
|
||
|
#include <opencv2/stereo/quasi_dense_stereo.hpp>
|
||
|
|
||
|
/**
|
||
|
@defgroup stereo Stereo Correspondance Algorithms
|
||
|
|
||
|
*/
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
namespace stereo
|
||
|
{
|
||
|
//! @addtogroup stereo
|
||
|
//! @{
|
||
|
/** @brief Filters off small noise blobs (speckles) in the disparity map
|
||
|
@param img The input 16-bit signed disparity image
|
||
|
@param newVal The disparity value used to paint-off the speckles
|
||
|
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
|
||
|
affected by the algorithm
|
||
|
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
|
||
|
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
|
||
|
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
|
||
|
account when specifying this parameter value.
|
||
|
@param buf The optional temporary buffer to avoid memory allocation within the function.
|
||
|
*/
|
||
|
/** @brief The base class for stereo correspondence algorithms.
|
||
|
*/
|
||
|
class StereoMatcher : public Algorithm
|
||
|
{
|
||
|
public:
|
||
|
enum { DISP_SHIFT = 4,
|
||
|
DISP_SCALE = (1 << DISP_SHIFT)
|
||
|
};
|
||
|
|
||
|
/** @brief Computes disparity map for the specified stereo pair
|
||
|
|
||
|
@param left Left 8-bit single-channel image.
|
||
|
@param right Right image of the same size and the same type as the left one.
|
||
|
@param disparity Output disparity map. It has the same size as the input images. Some algorithms,
|
||
|
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
|
||
|
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
|
||
|
*/
|
||
|
virtual void compute( InputArray left, InputArray right,
|
||
|
OutputArray disparity ) = 0;
|
||
|
|
||
|
virtual int getMinDisparity() const = 0;
|
||
|
virtual void setMinDisparity(int minDisparity) = 0;
|
||
|
|
||
|
virtual int getNumDisparities() const = 0;
|
||
|
virtual void setNumDisparities(int numDisparities) = 0;
|
||
|
|
||
|
virtual int getBlockSize() const = 0;
|
||
|
virtual void setBlockSize(int blockSize) = 0;
|
||
|
|
||
|
virtual int getSpeckleWindowSize() const = 0;
|
||
|
virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
|
||
|
|
||
|
virtual int getSpeckleRange() const = 0;
|
||
|
virtual void setSpeckleRange(int speckleRange) = 0;
|
||
|
|
||
|
virtual int getDisp12MaxDiff() const = 0;
|
||
|
virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
|
||
|
|
||
|
};
|
||
|
//!speckle removal algorithms. These algorithms have the purpose of removing small regions
|
||
|
enum {
|
||
|
CV_SPECKLE_REMOVAL_ALGORITHM, CV_SPECKLE_REMOVAL_AVG_ALGORITHM
|
||
|
};
|
||
|
//!subpixel interpolationm methods for disparities.
|
||
|
enum{
|
||
|
CV_QUADRATIC_INTERPOLATION, CV_SIMETRICV_INTERPOLATION
|
||
|
};
|
||
|
/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
|
||
|
contributed to OpenCV by K. Konolige.
|
||
|
*/
|
||
|
class StereoBinaryBM : public StereoMatcher
|
||
|
{
|
||
|
public:
|
||
|
enum { PREFILTER_NORMALIZED_RESPONSE = 0,
|
||
|
PREFILTER_XSOBEL = 1
|
||
|
};
|
||
|
|
||
|
virtual int getPreFilterType() const = 0;
|
||
|
virtual void setPreFilterType(int preFilterType) = 0;
|
||
|
|
||
|
virtual int getPreFilterSize() const = 0;
|
||
|
virtual void setPreFilterSize(int preFilterSize) = 0;
|
||
|
|
||
|
virtual int getPreFilterCap() const = 0;
|
||
|
virtual void setPreFilterCap(int preFilterCap) = 0;
|
||
|
|
||
|
virtual int getTextureThreshold() const = 0;
|
||
|
virtual void setTextureThreshold(int textureThreshold) = 0;
|
||
|
|
||
|
virtual int getUniquenessRatio() const = 0;
|
||
|
virtual void setUniquenessRatio(int uniquenessRatio) = 0;
|
||
|
|
||
|
virtual int getSmallerBlockSize() const = 0;
|
||
|
virtual void setSmallerBlockSize(int blockSize) = 0;
|
||
|
|
||
|
virtual int getScalleFactor() const = 0 ;
|
||
|
virtual void setScalleFactor(int factor) = 0;
|
||
|
|
||
|
virtual int getSpekleRemovalTechnique() const = 0 ;
|
||
|
virtual void setSpekleRemovalTechnique(int factor) = 0;
|
||
|
|
||
|
virtual bool getUsePrefilter() const = 0 ;
|
||
|
virtual void setUsePrefilter(bool factor) = 0;
|
||
|
|
||
|
virtual int getBinaryKernelType() const = 0;
|
||
|
virtual void setBinaryKernelType(int value) = 0;
|
||
|
|
||
|
virtual int getAgregationWindowSize() const = 0;
|
||
|
virtual void setAgregationWindowSize(int value) = 0;
|
||
|
/** @brief Creates StereoBM object
|
||
|
|
||
|
@param numDisparities the disparity search range. For each pixel algorithm will find the best
|
||
|
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
|
||
|
shifted by changing the minimum disparity.
|
||
|
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
|
||
|
(as the block is centered at the current pixel). Larger block size implies smoother, though less
|
||
|
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
|
||
|
chance for algorithm to find a wrong correspondence.
|
||
|
|
||
|
The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
|
||
|
a specific stereo pair.
|
||
|
*/
|
||
|
CV_EXPORTS static Ptr< cv::stereo::StereoBinaryBM > create(int numDisparities = 0, int blockSize = 9);
|
||
|
};
|
||
|
|
||
|
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
|
||
|
one as follows:
|
||
|
|
||
|
- By default, the algorithm is single-pass, which means that you consider only 5 directions
|
||
|
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
|
||
|
algorithm but beware that it may consume a lot of memory.
|
||
|
- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
|
||
|
blocks to single pixels.
|
||
|
- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
|
||
|
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
|
||
|
- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
|
||
|
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
|
||
|
check, quadratic interpolation and speckle filtering).
|
||
|
|
||
|
@note
|
||
|
- (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
|
||
|
at opencv_source_code/samples/python2/stereo_match.py
|
||
|
*/
|
||
|
class StereoBinarySGBM : public StereoMatcher
|
||
|
{
|
||
|
public:
|
||
|
enum
|
||
|
{
|
||
|
MODE_SGBM = 0,
|
||
|
MODE_HH = 1
|
||
|
};
|
||
|
|
||
|
virtual int getPreFilterCap() const = 0;
|
||
|
virtual void setPreFilterCap(int preFilterCap) = 0;
|
||
|
|
||
|
virtual int getUniquenessRatio() const = 0;
|
||
|
virtual void setUniquenessRatio(int uniquenessRatio) = 0;
|
||
|
|
||
|
virtual int getP1() const = 0;
|
||
|
virtual void setP1(int P1) = 0;
|
||
|
|
||
|
virtual int getP2() const = 0;
|
||
|
virtual void setP2(int P2) = 0;
|
||
|
|
||
|
virtual int getMode() const = 0;
|
||
|
virtual void setMode(int mode) = 0;
|
||
|
|
||
|
virtual int getSpekleRemovalTechnique() const = 0 ;
|
||
|
virtual void setSpekleRemovalTechnique(int factor) = 0;
|
||
|
|
||
|
virtual int getBinaryKernelType() const = 0;
|
||
|
virtual void setBinaryKernelType(int value) = 0;
|
||
|
|
||
|
virtual int getSubPixelInterpolationMethod() const = 0;
|
||
|
virtual void setSubPixelInterpolationMethod(int value) = 0;
|
||
|
|
||
|
/** @brief Creates StereoSGBM object
|
||
|
|
||
|
@param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
|
||
|
rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
|
||
|
@param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
|
||
|
zero. In the current implementation, this parameter must be divisible by 16.
|
||
|
@param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
|
||
|
somewhere in the 3..11 range.
|
||
|
@param P1 The first parameter controlling the disparity smoothness.This parameter is used for the case of slanted surfaces (not fronto parallel).
|
||
|
@param P2 The second parameter controlling the disparity smoothness.This parameter is used for "solving" the depth discontinuities problem.
|
||
|
The larger the values are, the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
|
||
|
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
|
||
|
pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
|
||
|
P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
|
||
|
32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
|
||
|
@param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
|
||
|
disparity check. Set it to a non-positive value to disable the check.
|
||
|
@param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
|
||
|
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
|
||
|
The result values are passed to the Birchfield-Tomasi pixel cost function.
|
||
|
@param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
|
||
|
value should "win" the second best value to consider the found match correct. Normally, a value
|
||
|
within the 5-15 range is good enough.
|
||
|
@param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
|
||
|
and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
|
||
|
50-200 range.
|
||
|
@param speckleRange Maximum disparity variation within each connected component. If you do speckle
|
||
|
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
|
||
|
Normally, 1 or 2 is good enough.
|
||
|
@param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
|
||
|
algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
|
||
|
huge for HD-size pictures. By default, it is set to false .
|
||
|
|
||
|
The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
|
||
|
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
|
||
|
to a custom value.
|
||
|
*/
|
||
|
CV_EXPORTS static Ptr<cv::stereo::StereoBinarySGBM> create(int minDisparity, int numDisparities, int blockSize,
|
||
|
int P1 = 100, int P2 = 1000, int disp12MaxDiff = 1,
|
||
|
int preFilterCap = 0, int uniquenessRatio = 5,
|
||
|
int speckleWindowSize = 400, int speckleRange = 200,
|
||
|
int mode = StereoBinarySGBM::MODE_SGBM);
|
||
|
};
|
||
|
//! @}
|
||
|
}//stereo
|
||
|
} // cv
|
||
|
|
||
|
#endif
|