fast-yolo4/3rdparty/opencv/inc/opencv2/tracking/onlineBoosting.hpp

294 lines
7.6 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_ONLINEBOOSTING_HPP__
#define __OPENCV_ONLINEBOOSTING_HPP__
#include "opencv2/core.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
//! @addtogroup tracking_detail
//! @{
inline namespace online_boosting {
//TODO based on the original implementation
//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
class BaseClassifier;
class WeakClassifierHaarFeature;
class EstimatedGaussDistribution;
class ClassifierThreshold;
class Detector;
class StrongClassifierDirectSelection
{
public:
StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit =
0 );
virtual ~StrongClassifierDirectSelection();
void initBaseClassifier();
bool update( const Mat& image, int target, float importance = 1.0 );
float eval( const Mat& response );
std::vector<int> getSelectedWeakClassifier();
float classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx );
int getNumBaseClassifier();
Size getPatchSize() const;
Rect getROI() const;
bool getUseFeatureExchange() const;
int getReplacedClassifier() const;
void replaceWeakClassifier( int idx );
int getSwappedClassifier() const;
private:
//StrongClassifier
int numBaseClassifier;
int numAllWeakClassifier;
int numWeakClassifier;
int iterInit;
BaseClassifier** baseClassifier;
std::vector<float> alpha;
cv::Size patchSize;
bool useFeatureExchange;
//StrongClassifierDirectSelection
std::vector<bool> m_errorMask;
std::vector<float> m_errors;
std::vector<float> m_sumErrors;
Detector* detector;
Rect ROI;
int replacedClassifier;
int swappedClassifier;
};
class BaseClassifier
{
public:
BaseClassifier( int numWeakClassifier, int iterationInit );
BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls );
WeakClassifierHaarFeature** getReferenceWeakClassifier()
{
return weakClassifier;
}
;
void trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask );
int selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors );
int computeReplaceWeakestClassifier( const std::vector<float> & errors );
void replaceClassifierStatistic( int sourceIndex, int targetIndex );
int getIdxOfNewWeakClassifier()
{
return m_idxOfNewWeakClassifier;
}
;
int eval( const Mat& image );
virtual ~BaseClassifier();
float getError( int curWeakClassifier );
void getErrors( float* errors );
int getSelectedClassifier() const;
void replaceWeakClassifier( int index );
protected:
void generateRandomClassifier();
WeakClassifierHaarFeature** weakClassifier;
bool m_referenceWeakClassifier;
int m_numWeakClassifier;
int m_selectedClassifier;
int m_idxOfNewWeakClassifier;
std::vector<float> m_wCorrect;
std::vector<float> m_wWrong;
int m_iterationInit;
};
class EstimatedGaussDistribution
{
public:
EstimatedGaussDistribution();
EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma );
virtual ~EstimatedGaussDistribution();
void update( float value ); //, float timeConstant = -1.0);
float getMean();
float getSigma();
void setValues( float mean, float sigma );
private:
float m_mean;
float m_sigma;
float m_P_mean;
float m_P_sigma;
float m_R_mean;
float m_R_sigma;
};
class WeakClassifierHaarFeature
{
public:
WeakClassifierHaarFeature();
virtual ~WeakClassifierHaarFeature();
bool update( float value, int target );
int eval( float value );
private:
float sigma;
float mean;
ClassifierThreshold* m_classifier;
void getInitialDistribution( EstimatedGaussDistribution *distribution );
void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples );
};
class Detector
{
public:
Detector( StrongClassifierDirectSelection* classifier );
virtual
~Detector( void );
void
classifySmooth( const std::vector<Mat>& image, float minMargin = 0 );
int
getNumDetections();
float
getConfidence( int patchIdx );
float
getConfidenceOfDetection( int detectionIdx );
float getConfidenceOfBestDetection()
{
return m_maxConfidence;
}
;
int
getPatchIdxOfBestDetection();
int
getPatchIdxOfDetection( int detectionIdx );
const std::vector<int> &
getIdxDetections() const
{
return m_idxDetections;
}
;
const std::vector<float> &
getConfidences() const
{
return m_confidences;
}
;
const cv::Mat &
getConfImageDisplay() const
{
return m_confImageDisplay;
}
private:
void
prepareConfidencesMemory( int numPatches );
void
prepareDetectionsMemory( int numDetections );
StrongClassifierDirectSelection* m_classifier;
std::vector<float> m_confidences;
int m_sizeConfidences;
int m_numDetections;
std::vector<int> m_idxDetections;
int m_sizeDetections;
int m_idxBestDetection;
float m_maxConfidence;
cv::Mat_<float> m_confMatrix;
cv::Mat_<float> m_confMatrixSmooth;
cv::Mat_<unsigned char> m_confImageDisplay;
};
class ClassifierThreshold
{
public:
ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples );
virtual ~ClassifierThreshold();
void update( float value, int target );
int eval( float value );
void* getDistribution( int target );
private:
EstimatedGaussDistribution* m_posSamples;
EstimatedGaussDistribution* m_negSamples;
float m_threshold;
int m_parity;
};
} // namespace
//! @}
}}} // namespace
#endif