203 lines
8.9 KiB
C++
203 lines
8.9 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#ifndef __OPENCV_XFEATURES2D_CUDA_HPP__
|
||
|
#define __OPENCV_XFEATURES2D_CUDA_HPP__
|
||
|
|
||
|
#include "opencv2/core/cuda.hpp"
|
||
|
|
||
|
namespace cv { namespace cuda {
|
||
|
|
||
|
//! @addtogroup xfeatures2d_nonfree
|
||
|
//! @{
|
||
|
|
||
|
/** @brief Class used for extracting Speeded Up Robust Features (SURF) from an image. :
|
||
|
|
||
|
The class SURF_CUDA implements Speeded Up Robust Features descriptor. There is a fast multi-scale
|
||
|
Hessian keypoint detector that can be used to find the keypoints (which is the default option). But
|
||
|
the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images
|
||
|
are supported.
|
||
|
|
||
|
The class SURF_CUDA can store results in the GPU and CPU memory. It provides functions to convert
|
||
|
results between CPU and GPU version ( uploadKeypoints, downloadKeypoints, downloadDescriptors ). The
|
||
|
format of CPU results is the same as SURF results. GPU results are stored in GpuMat. The keypoints
|
||
|
matrix is \f$\texttt{nFeatures} \times 7\f$ matrix with the CV_32FC1 type.
|
||
|
|
||
|
- keypoints.ptr\<float\>(X_ROW)[i] contains x coordinate of the i-th feature.
|
||
|
- keypoints.ptr\<float\>(Y_ROW)[i] contains y coordinate of the i-th feature.
|
||
|
- keypoints.ptr\<float\>(LAPLACIAN_ROW)[i] contains the laplacian sign of the i-th feature.
|
||
|
- keypoints.ptr\<float\>(OCTAVE_ROW)[i] contains the octave of the i-th feature.
|
||
|
- keypoints.ptr\<float\>(SIZE_ROW)[i] contains the size of the i-th feature.
|
||
|
- keypoints.ptr\<float\>(ANGLE_ROW)[i] contain orientation of the i-th feature.
|
||
|
- keypoints.ptr\<float\>(HESSIAN_ROW)[i] contains the response of the i-th feature.
|
||
|
|
||
|
The descriptors matrix is \f$\texttt{nFeatures} \times \texttt{descriptorSize}\f$ matrix with the
|
||
|
CV_32FC1 type.
|
||
|
|
||
|
The class SURF_CUDA uses some buffers and provides access to it. All buffers can be safely released
|
||
|
between function calls.
|
||
|
|
||
|
@sa SURF
|
||
|
|
||
|
@note
|
||
|
- An example for using the SURF keypoint matcher on GPU can be found at
|
||
|
opencv_source_code/samples/gpu/surf_keypoint_matcher.cpp
|
||
|
|
||
|
*/
|
||
|
class CV_EXPORTS_W SURF_CUDA
|
||
|
{
|
||
|
public:
|
||
|
enum KeypointLayout
|
||
|
{
|
||
|
X_ROW = 0,
|
||
|
Y_ROW,
|
||
|
LAPLACIAN_ROW,
|
||
|
OCTAVE_ROW,
|
||
|
SIZE_ROW,
|
||
|
ANGLE_ROW,
|
||
|
HESSIAN_ROW,
|
||
|
ROWS_COUNT
|
||
|
};
|
||
|
|
||
|
//! the default constructor
|
||
|
SURF_CUDA();
|
||
|
//! the full constructor taking all the necessary parameters
|
||
|
explicit SURF_CUDA(double _hessianThreshold, int _nOctaves=4,
|
||
|
int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false);
|
||
|
|
||
|
/**
|
||
|
@param _hessianThreshold Threshold for hessian keypoint detector used in SURF.
|
||
|
@param _nOctaves Number of pyramid octaves the keypoint detector will use.
|
||
|
@param _nOctaveLayers Number of octave layers within each octave.
|
||
|
@param _extended Extended descriptor flag (true - use extended 128-element descriptors; false - use
|
||
|
64-element descriptors).
|
||
|
@param _keypointsRatio
|
||
|
@param _upright Up-right or rotated features flag (true - do not compute orientation of features;
|
||
|
false - compute orientation).
|
||
|
*/
|
||
|
CV_WRAP static Ptr<SURF_CUDA> create(double _hessianThreshold, int _nOctaves = 4,
|
||
|
int _nOctaveLayers = 2, bool _extended = false, float _keypointsRatio = 0.01f, bool _upright = false);
|
||
|
|
||
|
//! returns the descriptor size in float's (64 or 128)
|
||
|
CV_WRAP int descriptorSize() const;
|
||
|
//! returns the default norm type
|
||
|
CV_WRAP int defaultNorm() const;
|
||
|
|
||
|
//! upload host keypoints to device memory
|
||
|
void uploadKeypoints(const std::vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);
|
||
|
//! download keypoints from device to host memory
|
||
|
CV_WRAP void downloadKeypoints(const GpuMat& keypointsGPU, CV_OUT std::vector<KeyPoint>& keypoints);
|
||
|
|
||
|
//! download descriptors from device to host memory
|
||
|
void downloadDescriptors(const GpuMat& descriptorsGPU, std::vector<float>& descriptors);
|
||
|
|
||
|
//! finds the keypoints using fast hessian detector used in SURF
|
||
|
//! supports CV_8UC1 images
|
||
|
//! keypoints will have nFeature cols and 6 rows
|
||
|
//! keypoints.ptr<float>(X_ROW)[i] will contain x coordinate of i'th feature
|
||
|
//! keypoints.ptr<float>(Y_ROW)[i] will contain y coordinate of i'th feature
|
||
|
//! keypoints.ptr<float>(LAPLACIAN_ROW)[i] will contain laplacian sign of i'th feature
|
||
|
//! keypoints.ptr<float>(OCTAVE_ROW)[i] will contain octave of i'th feature
|
||
|
//! keypoints.ptr<float>(SIZE_ROW)[i] will contain size of i'th feature
|
||
|
//! keypoints.ptr<float>(ANGLE_ROW)[i] will contain orientation of i'th feature
|
||
|
//! keypoints.ptr<float>(HESSIAN_ROW)[i] will contain response of i'th feature
|
||
|
void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints);
|
||
|
//! finds the keypoints and computes their descriptors.
|
||
|
//! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction
|
||
|
void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
|
||
|
bool useProvidedKeypoints = false);
|
||
|
|
||
|
/** @brief Finds the keypoints using fast hessian detector used in SURF
|
||
|
|
||
|
@param img Source image, currently supports only CV_8UC1 images.
|
||
|
@param mask A mask image same size as src and of type CV_8UC1.
|
||
|
@param keypoints Detected keypoints.
|
||
|
*/
|
||
|
CV_WRAP inline void detect(const GpuMat& img, const GpuMat& mask, CV_OUT GpuMat& keypoints) {
|
||
|
(*this)(img, mask, keypoints);
|
||
|
}
|
||
|
|
||
|
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
||
|
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors,
|
||
|
bool useProvidedKeypoints = false);
|
||
|
|
||
|
/** @brief Finds the keypoints and computes their descriptors using fast hessian detector used in SURF
|
||
|
|
||
|
@param img Source image, currently supports only CV_8UC1 images.
|
||
|
@param mask A mask image same size as src and of type CV_8UC1.
|
||
|
@param keypoints Detected keypoints.
|
||
|
@param descriptors Keypoint descriptors.
|
||
|
@param useProvidedKeypoints Compute descriptors for the user-provided keypoints and recompute keypoints direction.
|
||
|
*/
|
||
|
CV_WRAP inline void detectWithDescriptors(const GpuMat& img, const GpuMat& mask, CV_OUT GpuMat& keypoints, CV_OUT GpuMat& descriptors,
|
||
|
bool useProvidedKeypoints = false) {
|
||
|
(*this)(img, mask, keypoints, descriptors, useProvidedKeypoints);
|
||
|
}
|
||
|
|
||
|
void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, std::vector<float>& descriptors,
|
||
|
bool useProvidedKeypoints = false);
|
||
|
|
||
|
void releaseMemory();
|
||
|
|
||
|
// SURF parameters
|
||
|
CV_PROP double hessianThreshold;
|
||
|
CV_PROP int nOctaves;
|
||
|
CV_PROP int nOctaveLayers;
|
||
|
CV_PROP bool extended;
|
||
|
CV_PROP bool upright;
|
||
|
|
||
|
//! max keypoints = min(keypointsRatio * img.size().area(), 65535)
|
||
|
CV_PROP float keypointsRatio;
|
||
|
|
||
|
GpuMat sum, mask1, maskSum;
|
||
|
|
||
|
GpuMat det, trace;
|
||
|
|
||
|
GpuMat maxPosBuffer;
|
||
|
};
|
||
|
|
||
|
//! @}
|
||
|
|
||
|
}} // namespace cv { namespace cuda {
|
||
|
|
||
|
#endif // __OPENCV_XFEATURES2D_CUDA_HPP__
|