/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef OPENCV_CORE_EIGEN_HPP #define OPENCV_CORE_EIGEN_HPP #ifndef EIGEN_WORLD_VERSION #error "Wrong usage of OpenCV's Eigen utility header. Include Eigen's headers first. See https://github.com/opencv/opencv/issues/17366" #endif #include "opencv2/core.hpp" #if defined _MSC_VER && _MSC_VER >= 1200 #define NOMINMAX // fix https://github.com/opencv/opencv/issues/17548 #pragma warning( disable: 4714 ) //__forceinline is not inlined #pragma warning( disable: 4127 ) //conditional expression is constant #pragma warning( disable: 4244 ) //conversion from '__int64' to 'int', possible loss of data #endif #if !defined(OPENCV_DISABLE_EIGEN_TENSOR_SUPPORT) #if EIGEN_WORLD_VERSION == 3 && EIGEN_MAJOR_VERSION >= 3 \ && defined(CV_CXX11) && defined(CV_CXX_STD_ARRAY) #include #define OPENCV_EIGEN_TENSOR_SUPPORT 1 #endif // EIGEN_WORLD_VERSION == 3 && EIGEN_MAJOR_VERSION >= 3 #endif // !defined(OPENCV_DISABLE_EIGEN_TENSOR_SUPPORT) namespace cv { /** @addtogroup core_eigen These functions are provided for OpenCV-Eigen interoperability. They convert `Mat` objects to corresponding `Eigen::Matrix` objects and vice-versa. Consult the [Eigen documentation](https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html) for information about the `Matrix` template type. @note Using these functions requires the `Eigen/Dense` or similar header to be included before this header. */ //! @{ #if defined(OPENCV_EIGEN_TENSOR_SUPPORT) || defined(CV_DOXYGEN) /** @brief Converts an Eigen::Tensor to a cv::Mat. The method converts an Eigen::Tensor with shape (H x W x C) to a cv::Mat where: H = number of rows W = number of columns C = number of channels Usage: \code Eigen::Tensor a_tensor(...); // populate tensor with values Mat a_mat; eigen2cv(a_tensor, a_mat); \endcode */ template static inline void eigen2cv( const Eigen::Tensor<_Tp, 3, _layout> &src, OutputArray dst ) { if( !(_layout & Eigen::RowMajorBit) ) { const std::array shuffle{2, 1, 0}; Eigen::Tensor<_Tp, 3, !_layout> row_major_tensor = src.swap_layout().shuffle(shuffle); Mat _src(src.dimension(0), src.dimension(1), CV_MAKETYPE(DataType<_Tp>::type, src.dimension(2)), row_major_tensor.data()); _src.copyTo(dst); } else { Mat _src(src.dimension(0), src.dimension(1), CV_MAKETYPE(DataType<_Tp>::type, src.dimension(2)), (void *)src.data()); _src.copyTo(dst); } } /** @brief Converts a cv::Mat to an Eigen::Tensor. The method converts a cv::Mat to an Eigen Tensor with shape (H x W x C) where: H = number of rows W = number of columns C = number of channels Usage: \code Mat a_mat(...); // populate Mat with values Eigen::Tensor a_tensor(...); cv2eigen(a_mat, a_tensor); \endcode */ template static inline void cv2eigen( const Mat &src, Eigen::Tensor<_Tp, 3, _layout> &dst ) { if( !(_layout & Eigen::RowMajorBit) ) { Eigen::Tensor<_Tp, 3, !_layout> row_major_tensor(src.rows, src.cols, src.channels()); Mat _dst(src.rows, src.cols, CV_MAKETYPE(DataType<_Tp>::type, src.channels()), row_major_tensor.data()); if (src.type() == _dst.type()) src.copyTo(_dst); else src.convertTo(_dst, _dst.type()); const std::array shuffle{2, 1, 0}; dst = row_major_tensor.swap_layout().shuffle(shuffle); } else { dst.resize(src.rows, src.cols, src.channels()); Mat _dst(src.rows, src.cols, CV_MAKETYPE(DataType<_Tp>::type, src.channels()), dst.data()); if (src.type() == _dst.type()) src.copyTo(_dst); else src.convertTo(_dst, _dst.type()); } } /** @brief Maps cv::Mat data to an Eigen::TensorMap. The method wraps an existing Mat data array with an Eigen TensorMap of shape (H x W x C) where: H = number of rows W = number of columns C = number of channels Explicit instantiation of the return type is required. @note Caller should be aware of the lifetime of the cv::Mat instance and take appropriate safety measures. The cv::Mat instance will retain ownership of the data and the Eigen::TensorMap will lose access when the cv::Mat data is deallocated. The example below initializes a cv::Mat and produces an Eigen::TensorMap: \code float arr[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; Mat a_mat(2, 2, CV_32FC3, arr); Eigen::TensorMap> a_tensormap = cv2eigen_tensormap(a_mat); \endcode */ template static inline Eigen::TensorMap> cv2eigen_tensormap(InputArray src) { Mat mat = src.getMat(); CV_CheckTypeEQ(mat.type(), CV_MAKETYPE(traits::Type<_Tp>::value, mat.channels()), ""); return Eigen::TensorMap>((_Tp *)mat.data, mat.rows, mat.cols, mat.channels()); } #endif // OPENCV_EIGEN_TENSOR_SUPPORT template static inline void eigen2cv( const Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& src, OutputArray dst ) { if( !(src.Flags & Eigen::RowMajorBit) ) { Mat _src(src.cols(), src.rows(), traits::Type<_Tp>::value, (void*)src.data(), src.outerStride()*sizeof(_Tp)); transpose(_src, dst); } else { Mat _src(src.rows(), src.cols(), traits::Type<_Tp>::value, (void*)src.data(), src.outerStride()*sizeof(_Tp)); _src.copyTo(dst); } } // Matx case template static inline void eigen2cv( const Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& src, Matx<_Tp, _rows, _cols>& dst ) { if( !(src.Flags & Eigen::RowMajorBit) ) { dst = Matx<_Tp, _cols, _rows>(static_cast(src.data())).t(); } else { dst = Matx<_Tp, _rows, _cols>(static_cast(src.data())); } } template static inline void cv2eigen( const Mat& src, Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& dst ) { CV_DbgAssert(src.rows == _rows && src.cols == _cols); if( !(dst.Flags & Eigen::RowMajorBit) ) { const Mat _dst(src.cols, src.rows, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); if( src.type() == _dst.type() ) transpose(src, _dst); else if( src.cols == src.rows ) { src.convertTo(_dst, _dst.type()); transpose(_dst, _dst); } else Mat(src.t()).convertTo(_dst, _dst.type()); } else { const Mat _dst(src.rows, src.cols, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); src.convertTo(_dst, _dst.type()); } } // Matx case template static inline void cv2eigen( const Matx<_Tp, _rows, _cols>& src, Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& dst ) { if( !(dst.Flags & Eigen::RowMajorBit) ) { const Mat _dst(_cols, _rows, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); transpose(src, _dst); } else { const Mat _dst(_rows, _cols, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); Mat(src).copyTo(_dst); } } template static inline void cv2eigen( const Mat& src, Eigen::Matrix<_Tp, Eigen::Dynamic, Eigen::Dynamic>& dst ) { dst.resize(src.rows, src.cols); if( !(dst.Flags & Eigen::RowMajorBit) ) { const Mat _dst(src.cols, src.rows, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); if( src.type() == _dst.type() ) transpose(src, _dst); else if( src.cols == src.rows ) { src.convertTo(_dst, _dst.type()); transpose(_dst, _dst); } else Mat(src.t()).convertTo(_dst, _dst.type()); } else { const Mat _dst(src.rows, src.cols, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); src.convertTo(_dst, _dst.type()); } } // Matx case template static inline void cv2eigen( const Matx<_Tp, _rows, _cols>& src, Eigen::Matrix<_Tp, Eigen::Dynamic, Eigen::Dynamic>& dst ) { dst.resize(_rows, _cols); if( !(dst.Flags & Eigen::RowMajorBit) ) { const Mat _dst(_cols, _rows, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); transpose(src, _dst); } else { const Mat _dst(_rows, _cols, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); Mat(src).copyTo(_dst); } } template static inline void cv2eigen( const Mat& src, Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst ) { CV_Assert(src.cols == 1); dst.resize(src.rows); if( !(dst.Flags & Eigen::RowMajorBit) ) { const Mat _dst(src.cols, src.rows, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); if( src.type() == _dst.type() ) transpose(src, _dst); else Mat(src.t()).convertTo(_dst, _dst.type()); } else { const Mat _dst(src.rows, src.cols, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); src.convertTo(_dst, _dst.type()); } } // Matx case template static inline void cv2eigen( const Matx<_Tp, _rows, 1>& src, Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst ) { dst.resize(_rows); if( !(dst.Flags & Eigen::RowMajorBit) ) { const Mat _dst(1, _rows, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); transpose(src, _dst); } else { const Mat _dst(_rows, 1, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); src.copyTo(_dst); } } template static inline void cv2eigen( const Mat& src, Eigen::Matrix<_Tp, 1, Eigen::Dynamic>& dst ) { CV_Assert(src.rows == 1); dst.resize(src.cols); if( !(dst.Flags & Eigen::RowMajorBit) ) { const Mat _dst(src.cols, src.rows, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); if( src.type() == _dst.type() ) transpose(src, _dst); else Mat(src.t()).convertTo(_dst, _dst.type()); } else { const Mat _dst(src.rows, src.cols, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); src.convertTo(_dst, _dst.type()); } } //Matx template static inline void cv2eigen( const Matx<_Tp, 1, _cols>& src, Eigen::Matrix<_Tp, 1, Eigen::Dynamic>& dst ) { dst.resize(_cols); if( !(dst.Flags & Eigen::RowMajorBit) ) { const Mat _dst(_cols, 1, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); transpose(src, _dst); } else { const Mat _dst(1, _cols, traits::Type<_Tp>::value, dst.data(), (size_t)(dst.outerStride()*sizeof(_Tp))); Mat(src).copyTo(_dst); } } //! @} } // cv #endif