// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2020, Huawei Technologies Co., Ltd. All rights reserved. // Third party copyrights are property of their respective owners. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Author: Liangqian Kong // Longbu Wang #ifndef OPENCV_CORE_QUATERNION_INL_HPP #define OPENCV_CORE_QUATERNION_INL_HPP #ifndef OPENCV_CORE_QUATERNION_HPP #erorr This is not a standalone header. Include quaternion.hpp instead. #endif //@cond IGNORE /////////////////////////////////////////////////////////////////////////////////////// //Implementation namespace cv { template Quat::Quat() : w(0), x(0), y(0), z(0) {} template Quat::Quat(const Vec &coeff):w(coeff[0]), x(coeff[1]), y(coeff[2]), z(coeff[3]){} template Quat::Quat(const T qw, const T qx, const T qy, const T qz):w(qw), x(qx), y(qy), z(qz){} template Quat Quat::createFromAngleAxis(const T angle, const Vec &axis) { T w, x, y, z; T vNorm = std::sqrt(axis.dot(axis)); if (vNorm < CV_QUAT_EPS) { CV_Error(Error::StsBadArg, "this quaternion does not represent a rotation"); } const T angle_half = angle * 0.5; w = std::cos(angle_half); const T sin_v = std::sin(angle_half); const T sin_norm = sin_v / vNorm; x = sin_norm * axis[0]; y = sin_norm * axis[1]; z = sin_norm * axis[2]; return Quat(w, x, y, z); } template Quat Quat::createFromRotMat(InputArray _R) { CV_CheckTypeEQ(_R.type(), cv::traits::Type::value, ""); if (_R.rows() != 3 || _R.cols() != 3) { CV_Error(Error::StsBadArg, "Cannot convert matrix to quaternion: rotation matrix should be a 3x3 matrix"); } Matx R; _R.copyTo(R); T S, w, x, y, z; T trace = R(0, 0) + R(1, 1) + R(2, 2); if (trace > 0) { S = std::sqrt(trace + 1) * 2; x = (R(1, 2) - R(2, 1)) / S; y = (R(2, 0) - R(0, 2)) / S; z = (R(0, 1) - R(1, 0)) / S; w = -0.25 * S; } else if (R(0, 0) > R(1, 1) && R(0, 0) > R(2, 2)) { S = std::sqrt(1.0 + R(0, 0) - R(1, 1) - R(2, 2)) * 2; x = -0.25 * S; y = -(R(1, 0) + R(0, 1)) / S; z = -(R(0, 2) + R(2, 0)) / S; w = (R(1, 2) - R(2, 1)) / S; } else if (R(1, 1) > R(2, 2)) { S = std::sqrt(1.0 - R(0, 0) + R(1, 1) - R(2, 2)) * 2; x = (R(0, 1) + R(1, 0)) / S; y = 0.25 * S; z = (R(1, 2) + R(2, 1)) / S; w = (R(0, 2) - R(2, 0)) / S; } else { S = std::sqrt(1.0 - R(0, 0) - R(1, 1) + R(2, 2)) * 2; x = (R(0, 2) + R(2, 0)) / S; y = (R(1, 2) + R(2, 1)) / S; z = 0.25 * S; w = -(R(0, 1) - R(1, 0)) / S; } return Quat (w, x, y, z); } template Quat Quat::createFromRvec(InputArray _rvec) { if (!((_rvec.cols() == 1 && _rvec.rows() == 3) || (_rvec.cols() == 3 && _rvec.rows() == 1))) { CV_Error(Error::StsBadArg, "Cannot convert rotation vector to quaternion: The length of rotation vector should be 3"); } Vec rvec; _rvec.copyTo(rvec); T psi = std::sqrt(rvec.dot(rvec)); if (abs(psi) < CV_QUAT_EPS) { return Quat (1, 0, 0, 0); } Vec axis = rvec / psi; return createFromAngleAxis(psi, axis); } template inline Quat Quat::operator-() const { return Quat(-w, -x, -y, -z); } template inline bool Quat::operator==(const Quat &q) const { return (abs(w - q.w) < CV_QUAT_EPS && abs(x - q.x) < CV_QUAT_EPS && abs(y - q.y) < CV_QUAT_EPS && abs(z - q.z) < CV_QUAT_EPS); } template inline Quat Quat::operator+(const Quat &q1) const { return Quat(w + q1.w, x + q1.x, y + q1.y, z + q1.z); } template inline Quat operator+(const T a, const Quat& q) { return Quat(q.w + a, q.x, q.y, q.z); } template inline Quat operator+(const Quat& q, const T a) { return Quat(q.w + a, q.x, q.y, q.z); } template inline Quat operator-(const T a, const Quat& q) { return Quat(a - q.w, -q.x, -q.y, -q.z); } template inline Quat operator-(const Quat& q, const T a) { return Quat(q.w - a, q.x, q.y, q.z); } template inline Quat Quat::operator-(const Quat &q1) const { return Quat(w - q1.w, x - q1.x, y - q1.y, z - q1.z); } template inline Quat& Quat::operator+=(const Quat &q1) { w += q1.w; x += q1.x; y += q1.y; z += q1.z; return *this; } template inline Quat& Quat::operator-=(const Quat &q1) { w -= q1.w; x -= q1.x; y -= q1.y; z -= q1.z; return *this; } template inline Quat Quat::operator*(const Quat &q1) const { Vec q{w, x, y, z}; Vec q2{q1.w, q1.x, q1.y, q1.z}; return Quat(q * q2); } template Quat operator*(const Quat &q1, const T a) { return Quat(a * q1.w, a * q1.x, a * q1.y, a * q1.z); } template Quat operator*(const T a, const Quat &q1) { return Quat(a * q1.w, a * q1.x, a * q1.y, a * q1.z); } template inline Quat& Quat::operator*=(const Quat &q1) { T qw, qx, qy, qz; qw = w * q1.w - x * q1.x - y * q1.y - z * q1.z; qx = x * q1.w + w * q1.x + y * q1.z - z * q1.y; qy = y * q1.w + w * q1.y + z * q1.x - x * q1.z; qz = z * q1.w + w * q1.z + x * q1.y - y * q1.x; w = qw; x = qx; y = qy; z = qz; return *this; } template inline Quat& Quat::operator/=(const Quat &q1) { Quat q(*this * q1.inv()); w = q.w; x = q.x; y = q.y; z = q.z; return *this; } template Quat& Quat::operator*=(const T q1) { w *= q1; x *= q1; y *= q1; z *= q1; return *this; } template inline Quat& Quat::operator/=(const T a) { const T a_inv = 1.0 / a; w *= a_inv; x *= a_inv; y *= a_inv; z *= a_inv; return *this; } template inline Quat Quat::operator/(const T a) const { const T a_inv = 1.0 / a; return Quat(w * a_inv, x * a_inv, y * a_inv, z * a_inv); } template inline Quat Quat::operator/(const Quat &q) const { return *this * q.inv(); } template inline const T& Quat::operator[](std::size_t n) const { switch (n) { case 0: return w; case 1: return x; case 2: return y; case 3: return z; default: CV_Error(Error::StsOutOfRange, "subscript exceeds the index range"); } } template inline T& Quat::operator[](std::size_t n) { switch (n) { case 0: return w; case 1: return x; case 2: return y; case 3: return z; default: CV_Error(Error::StsOutOfRange, "subscript exceeds the index range"); } } template std::ostream & operator<<(std::ostream &os, const Quat &q) { os << "Quat " << Vec{q.w, q.x, q.y, q.z}; return os; } template inline T Quat::at(size_t index) const { return (*this)[index]; } template inline Quat Quat::conjugate() const { return Quat(w, -x, -y, -z); } template inline T Quat::norm() const { return std::sqrt(dot(*this)); } template Quat exp(const Quat &q) { return q.exp(); } template Quat Quat::exp() const { Vec v{x, y, z}; T normV = std::sqrt(v.dot(v)); T k = normV < CV_QUAT_EPS ? 1 : std::sin(normV) / normV; return std::exp(w) * Quat(std::cos(normV), v[0] * k, v[1] * k, v[2] * k); } template Quat log(const Quat &q, QuatAssumeType assumeUnit) { return q.log(assumeUnit); } template Quat Quat::log(QuatAssumeType assumeUnit) const { Vec v{x, y, z}; T vNorm = std::sqrt(v.dot(v)); if (assumeUnit) { T k = vNorm < CV_QUAT_EPS ? 1 : std::acos(w) / vNorm; return Quat(0, v[0] * k, v[1] * k, v[2] * k); } T qNorm = norm(); if (qNorm < CV_QUAT_EPS) { CV_Error(Error::StsBadArg, "Cannot apply this quaternion to log function: undefined"); } T k = vNorm < CV_QUAT_EPS ? 1 : std::acos(w / qNorm) / vNorm; return Quat(std::log(qNorm), v[0] * k, v[1] * k, v[2] *k); } template inline Quat power(const Quat &q1, const T alpha, QuatAssumeType assumeUnit) { return q1.power(alpha, assumeUnit); } template inline Quat Quat::power(const T alpha, QuatAssumeType assumeUnit) const { if (x * x + y * y + z * z > CV_QUAT_EPS) { T angle = getAngle(assumeUnit); Vec axis = getAxis(assumeUnit); if (assumeUnit) { return createFromAngleAxis(alpha * angle, axis); } return std::pow(norm(), alpha) * createFromAngleAxis(alpha * angle, axis); } else { return std::pow(norm(), alpha) * Quat(w, x, y, z); } } template inline Quat sqrt(const Quat &q, QuatAssumeType assumeUnit) { return q.sqrt(assumeUnit); } template inline Quat Quat::sqrt(QuatAssumeType assumeUnit) const { return power(0.5, assumeUnit); } template inline Quat power(const Quat &p, const Quat &q, QuatAssumeType assumeUnit) { return p.power(q, assumeUnit); } template inline Quat Quat::power(const Quat &q, QuatAssumeType assumeUnit) const { return cv::exp(q * log(assumeUnit)); } template inline T Quat::dot(Quat q1) const { return w * q1.w + x * q1.x + y * q1.y + z * q1.z; } template inline Quat crossProduct(const Quat &p, const Quat &q) { return p.crossProduct(q); } template inline Quat Quat::crossProduct(const Quat &q) const { return Quat (0, y * q.z - z * q.y, z * q.x - x * q.z, x * q.y - q.x * y); } template inline Quat Quat::normalize() const { T normVal = norm(); if (normVal < CV_QUAT_EPS) { CV_Error(Error::StsBadArg, "Cannot normalize this quaternion: the norm is too small."); } return Quat(w / normVal, x / normVal, y / normVal, z / normVal) ; } template inline Quat inv(const Quat &q, QuatAssumeType assumeUnit) { return q.inv(assumeUnit); } template inline Quat Quat::inv(QuatAssumeType assumeUnit) const { if (assumeUnit) { return conjugate(); } T norm2 = dot(*this); if (norm2 < CV_QUAT_EPS) { CV_Error(Error::StsBadArg, "This quaternion do not have inverse quaternion"); } return conjugate() / norm2; } template inline Quat sinh(const Quat &q) { return q.sinh(); } template inline Quat Quat::sinh() const { Vec v{x, y ,z}; T vNorm = std::sqrt(v.dot(v)); T k = vNorm < CV_QUAT_EPS ? 1 : std::cosh(w) * std::sin(vNorm) / vNorm; return Quat(std::sinh(w) * std::cos(vNorm), v[0] * k, v[1] * k, v[2] * k); } template inline Quat cosh(const Quat &q) { return q.cosh(); } template inline Quat Quat::cosh() const { Vec v{x, y ,z}; T vNorm = std::sqrt(v.dot(v)); T k = vNorm < CV_QUAT_EPS ? 1 : std::sinh(w) * std::sin(vNorm) / vNorm; return Quat(std::cosh(w) * std::cos(vNorm), v[0] * k, v[1] * k, v[2] * k); } template inline Quat tanh(const Quat &q) { return q.tanh(); } template inline Quat Quat::tanh() const { return sinh() * cosh().inv(); } template inline Quat sin(const Quat &q) { return q.sin(); } template inline Quat Quat::sin() const { Vec v{x, y ,z}; T vNorm = std::sqrt(v.dot(v)); T k = vNorm < CV_QUAT_EPS ? 1 : std::cos(w) * std::sinh(vNorm) / vNorm; return Quat(std::sin(w) * std::cosh(vNorm), v[0] * k, v[1] * k, v[2] * k); } template inline Quat cos(const Quat &q) { return q.cos(); } template inline Quat Quat::cos() const { Vec v{x, y ,z}; T vNorm = std::sqrt(v.dot(v)); T k = vNorm < CV_QUAT_EPS ? 1 : std::sin(w) * std::sinh(vNorm) / vNorm; return Quat(std::cos(w) * std::cosh(vNorm), -v[0] * k, -v[1] * k, -v[2] * k); } template inline Quat tan(const Quat &q) { return q.tan(); } template inline Quat Quat::tan() const { return sin() * cos().inv(); } template inline Quat asinh(const Quat &q) { return q.asinh(); } template inline Quat Quat::asinh() const { return cv::log(*this + cv::power(*this * *this + Quat(1, 0, 0, 0), 0.5)); } template inline Quat acosh(const Quat &q) { return q.acosh(); } template inline Quat Quat::acosh() const { return cv::log(*this + cv::power(*this * *this - Quat(1,0,0,0), 0.5)); } template inline Quat atanh(const Quat &q) { return q.atanh(); } template inline Quat Quat::atanh() const { Quat ident(1, 0, 0, 0); Quat c1 = (ident + *this).log(); Quat c2 = (ident - *this).log(); return 0.5 * (c1 - c2); } template inline Quat asin(const Quat &q) { return q.asin(); } template inline Quat Quat::asin() const { Quat v(0, x, y, z); T vNorm = v.norm(); T k = vNorm < CV_QUAT_EPS ? 1 : vNorm; return -v / k * (*this * v / k).asinh(); } template inline Quat acos(const Quat &q) { return q.acos(); } template inline Quat Quat::acos() const { Quat v(0, x, y, z); T vNorm = v.norm(); T k = vNorm < CV_QUAT_EPS ? 1 : vNorm; return -v / k * acosh(); } template inline Quat atan(const Quat &q) { return q.atan(); } template inline Quat Quat::atan() const { Quat v(0, x, y, z); T vNorm = v.norm(); T k = vNorm < CV_QUAT_EPS ? 1 : vNorm; return -v / k * (*this * v / k).atanh(); } template inline T Quat::getAngle(QuatAssumeType assumeUnit) const { if (assumeUnit) { return 2 * std::acos(w); } if (norm() < CV_QUAT_EPS) { CV_Error(Error::StsBadArg, "This quaternion does not represent a rotation"); } return 2 * std::acos(w / norm()); } template inline Vec Quat::getAxis(QuatAssumeType assumeUnit) const { T angle = getAngle(assumeUnit); const T sin_v = std::sin(angle * 0.5); if (assumeUnit) { return Vec{x, y, z} / sin_v; } return Vec {x, y, z} / (norm() * sin_v); } template Matx Quat::toRotMat4x4(QuatAssumeType assumeUnit) const { T a = w, b = x, c = y, d = z; if (!assumeUnit) { Quat qTemp = normalize(); a = qTemp.w; b = qTemp.x; c = qTemp.y; d = qTemp.z; } Matx R{ 1 - 2 * (c * c + d * d), 2 * (b * c - a * d) , 2 * (b * d + a * c) , 0, 2 * (b * c + a * d) , 1 - 2 * (b * b + d * d), 2 * (c * d - a * b) , 0, 2 * (b * d - a * c) , 2 * (c * d + a * b) , 1 - 2 * (b * b + c * c), 0, 0 , 0 , 0 , 1, }; return R; } template Matx Quat::toRotMat3x3(QuatAssumeType assumeUnit) const { T a = w, b = x, c = y, d = z; if (!assumeUnit) { Quat qTemp = normalize(); a = qTemp.w; b = qTemp.x; c = qTemp.y; d = qTemp.z; } Matx R{ 1 - 2 * (c * c + d * d), 2 * (b * c - a * d) , 2 * (b * d + a * c), 2 * (b * c + a * d) , 1 - 2 * (b * b + d * d), 2 * (c * d - a * b), 2 * (b * d - a * c) , 2 * (c * d + a * b) , 1 - 2 * (b * b + c * c) }; return R; } template Vec Quat::toRotVec(QuatAssumeType assumeUnit) const { T angle = getAngle(assumeUnit); Vec axis = getAxis(assumeUnit); return angle * axis; } template Vec Quat::toVec() const { return Vec{w, x, y, z}; } template Quat Quat::lerp(const Quat &q0, const Quat &q1, const T t) { return (1 - t) * q0 + t * q1; } template Quat Quat::slerp(const Quat &q0, const Quat &q1, const T t, QuatAssumeType assumeUnit, bool directChange) { Quatd v0(q0); Quatd v1(q1); if (!assumeUnit) { v0 = v0.normalize(); v1 = v1.normalize(); } T cosTheta = v0.dot(v1); constexpr T DOT_THRESHOLD = 0.995; if (cosTheta > DOT_THRESHOLD) { return nlerp(v0, v1, t, QUAT_ASSUME_UNIT); } if (directChange && cosTheta < 0) { v0 = -v0; cosTheta = -cosTheta; } T sinTheta = std::sqrt(1 - cosTheta * cosTheta); T angle = atan2(sinTheta, cosTheta); return (std::sin((1 - t) * angle) / (sinTheta) * v0 + std::sin(t * angle) / (sinTheta) * v1).normalize(); } template inline Quat Quat::nlerp(const Quat &q0, const Quat &q1, const T t, QuatAssumeType assumeUnit) { Quat v0(q0), v1(q1); if (v1.dot(v0) < 0) { v0 = -v0; } if (assumeUnit) { return ((1 - t) * v0 + t * v1).normalize(); } v0 = v0.normalize(); v1 = v1.normalize(); return ((1 - t) * v0 + t * v1).normalize(); } template inline bool Quat::isNormal(T eps) const { double normVar = norm(); if ((normVar > 1 - eps) && (normVar < 1 + eps)) return true; return false; } template inline void Quat::assertNormal(T eps) const { if (!isNormal(eps)) CV_Error(Error::StsBadArg, "Quaternion should be normalized"); } template inline Quat Quat::squad(const Quat &q0, const Quat &q1, const Quat &q2, const Quat &q3, const T t, QuatAssumeType assumeUnit, bool directChange) { Quat v0(q0), v1(q1), v2(q2), v3(q3); if (!assumeUnit) { v0 = v0.normalize(); v1 = v1.normalize(); v2 = v2.normalize(); v3 = v3.normalize(); } Quat c0 = slerp(v0, v3, t, assumeUnit, directChange); Quat c1 = slerp(v1, v2, t, assumeUnit, directChange); return slerp(c0, c1, 2 * t * (1 - t), assumeUnit, directChange); } template Quat Quat::interPoint(const Quat &q0, const Quat &q1, const Quat &q2, QuatAssumeType assumeUnit) { Quat v0(q0), v1(q1), v2(q2); if (!assumeUnit) { v0 = v0.normalize(); v1 = v1.normalize(); v2 = v2.normalize(); } return v1 * cv::exp(-(cv::log(v1.conjugate() * v0, assumeUnit) + (cv::log(v1.conjugate() * v2, assumeUnit))) / 4); } template Quat Quat::spline(const Quat &q0, const Quat &q1, const Quat &q2, const Quat &q3, const T t, QuatAssumeType assumeUnit) { Quatd v0(q0), v1(q1), v2(q2), v3(q3); if (!assumeUnit) { v0 = v0.normalize(); v1 = v1.normalize(); v2 = v2.normalize(); v3 = v3.normalize(); } T cosTheta; std::vector> vec{v0, v1, v2, v3}; for (size_t i = 0; i < 3; ++i) { cosTheta = vec[i].dot(vec[i + 1]); if (cosTheta < 0) { vec[i + 1] = -vec[i + 1]; } } Quat s1 = interPoint(vec[0], vec[1], vec[2], QUAT_ASSUME_UNIT); Quat s2 = interPoint(vec[1], vec[2], vec[3], QUAT_ASSUME_UNIT); return squad(vec[1], s1, s2, vec[2], t, assumeUnit, QUAT_ASSUME_NOT_UNIT); } namespace detail { template static Quat createFromAxisRot(int axis, const T theta) { if (axis == 0) return Quat::createFromXRot(theta); if (axis == 1) return Quat::createFromYRot(theta); if (axis == 2) return Quat::createFromZRot(theta); CV_Assert(0); } inline bool isIntAngleType(QuatEnum::EulerAnglesType eulerAnglesType) { return eulerAnglesType < QuatEnum::EXT_XYZ; } inline bool isTaitBryan(QuatEnum::EulerAnglesType eulerAnglesType) { return eulerAnglesType/6 == 1 || eulerAnglesType/6 == 3; } } // namespace detail template Quat Quat::createFromYRot(const T theta) { return Quat{std::cos(theta * 0.5f), 0, std::sin(theta * 0.5f), 0}; } template Quat Quat::createFromXRot(const T theta){ return Quat{std::cos(theta * 0.5f), std::sin(theta * 0.5f), 0, 0}; } template Quat Quat::createFromZRot(const T theta){ return Quat{std::cos(theta * 0.5f), 0, 0, std::sin(theta * 0.5f)}; } template Quat Quat::createFromEulerAngles(const Vec &angles, QuatEnum::EulerAnglesType eulerAnglesType) { CV_Assert(eulerAnglesType < QuatEnum::EulerAnglesType::EULER_ANGLES_MAX_VALUE); static const int rotationAxis[24][3] = { {0, 1, 2}, ///< Intrinsic rotations with the Euler angles type X-Y-Z {0, 2, 1}, ///< Intrinsic rotations with the Euler angles type X-Z-Y {1, 0, 2}, ///< Intrinsic rotations with the Euler angles type Y-X-Z {1, 2, 0}, ///< Intrinsic rotations with the Euler angles type Y-Z-X {2, 0, 1}, ///< Intrinsic rotations with the Euler angles type Z-X-Y {2, 1, 0}, ///< Intrinsic rotations with the Euler angles type Z-Y-X {0, 1, 0}, ///< Intrinsic rotations with the Euler angles type X-Y-X {0, 2, 0}, ///< Intrinsic rotations with the Euler angles type X-Z-X {1, 0, 1}, ///< Intrinsic rotations with the Euler angles type Y-X-Y {1, 2, 1}, ///< Intrinsic rotations with the Euler angles type Y-Z-Y {2, 0, 2}, ///< Intrinsic rotations with the Euler angles type Z-X-Z {2, 1, 2}, ///< Intrinsic rotations with the Euler angles type Z-Y-Z {0, 1, 2}, ///< Extrinsic rotations with the Euler angles type X-Y-Z {0, 2, 1}, ///< Extrinsic rotations with the Euler angles type X-Z-Y {1, 0, 2}, ///< Extrinsic rotations with the Euler angles type Y-X-Z {1, 2, 0}, ///< Extrinsic rotations with the Euler angles type Y-Z-X {2, 0, 1}, ///< Extrinsic rotations with the Euler angles type Z-X-Y {2, 1, 0}, ///< Extrinsic rotations with the Euler angles type Z-Y-X {0, 1, 0}, ///< Extrinsic rotations with the Euler angles type X-Y-X {0, 2, 0}, ///< Extrinsic rotations with the Euler angles type X-Z-X {1, 0, 1}, ///< Extrinsic rotations with the Euler angles type Y-X-Y {1, 2, 1}, ///< Extrinsic rotations with the Euler angles type Y-Z-Y {2, 0, 2}, ///< Extrinsic rotations with the Euler angles type Z-X-Z {2, 1, 2} ///< Extrinsic rotations with the Euler angles type Z-Y-Z }; Quat q1 = detail::createFromAxisRot(rotationAxis[eulerAnglesType][0], angles(0)); Quat q2 = detail::createFromAxisRot(rotationAxis[eulerAnglesType][1], angles(1)); Quat q3 = detail::createFromAxisRot(rotationAxis[eulerAnglesType][2], angles(2)); if (detail::isIntAngleType(eulerAnglesType)) { return q1 * q2 * q3; } else // (!detail::isIntAngleType(eulerAnglesType)) { return q3 * q2 * q1; } } template Vec Quat::toEulerAngles(QuatEnum::EulerAnglesType eulerAnglesType){ CV_Assert(eulerAnglesType < QuatEnum::EulerAnglesType::EULER_ANGLES_MAX_VALUE); Matx33d R = toRotMat3x3(); enum { C_ZERO, C_PI, C_PI_2, N_CONSTANTS, R_0_0 = N_CONSTANTS, R_0_1, R_0_2, R_1_0, R_1_1, R_1_2, R_2_0, R_2_1, R_2_2 }; static const T constants_[N_CONSTANTS] = { 0, // C_ZERO (T)CV_PI, // C_PI (T)(CV_PI * 0.5) // C_PI_2, -C_PI_2 }; static const int rotationR_[24][12] = { {+R_0_2, +R_1_0, +R_1_1, C_PI_2, +R_2_1, +R_1_1, -C_PI_2, -R_1_2, +R_2_2, +R_0_2, -R_0_1, +R_0_0}, // INT_XYZ {+R_0_1, -R_1_2, +R_2_2, -C_PI_2, +R_2_0, +R_2_2, C_PI_2, +R_2_1, +R_1_1, -R_0_1, +R_0_2, +R_0_0}, // INT_XZY {+R_1_2, -R_0_1, +R_0_0, -C_PI_2, +R_0_1, +R_0_0, C_PI_2, +R_0_2, +R_2_2, -R_1_2, +R_1_0, +R_1_1}, // INT_YXZ {+R_1_0, +R_0_2, +R_2_2, C_PI_2, +R_0_2, +R_0_1, -C_PI_2, -R_2_0, +R_0_0, +R_1_0, -R_1_2, +R_1_1}, // INT_YZX {+R_2_1, +R_1_0, +R_0_0, C_PI_2, +R_1_0, +R_0_0, -C_PI_2, -R_0_1, +R_1_1, +R_2_1, -R_2_0, +R_2_2}, // INT_ZXY {+R_2_0, -R_0_1, +R_1_1, -C_PI_2, +R_1_2, +R_1_1, C_PI_2, +R_1_0, +R_0_0, -R_2_0, +R_2_1, +R_2_2}, // INT_ZYX {+R_0_0, +R_2_1, +R_2_2, C_ZERO, +R_1_2, +R_1_1, C_PI, +R_1_0, -R_2_0, +R_0_0, +R_0_1, +R_0_2}, // INT_XYX {+R_0_0, +R_2_1, +R_2_2, C_ZERO, -R_2_1, +R_2_2, C_PI, +R_2_0, +R_1_0, +R_0_0, +R_0_2, -R_0_1}, // INT_XZX {+R_1_1, +R_0_2, +R_0_0, C_ZERO, -R_2_0, +R_0_0, C_PI, +R_0_1, +R_2_1, +R_1_1, +R_1_0, -R_1_2}, // INT_YXY {+R_1_1, +R_0_2, +R_0_0, C_ZERO, +R_0_2, -R_0_0, C_PI, +R_2_1, -R_0_1, +R_1_1, +R_1_2, +R_1_0}, // INT_YZY {+R_2_2, +R_1_0, +R_1_1, C_ZERO, +R_1_0, +R_0_0, C_PI, +R_0_2, -R_1_2, +R_2_2, +R_2_0, +R_2_1}, // INT_ZXZ {+R_2_2, +R_1_0, +R_0_0, C_ZERO, +R_1_0, +R_0_0, C_PI, +R_1_2, +R_0_2, +R_2_2, +R_2_1, -R_2_0}, // INT_ZYZ {+R_2_0, -C_PI_2, -R_0_1, +R_1_1, C_PI_2, +R_1_2, +R_1_1, +R_2_1, +R_2_2, -R_2_0, +R_1_0, +R_0_0}, // EXT_XYZ {+R_1_0, C_PI_2, +R_0_2, +R_2_2, -C_PI_2, +R_0_2, +R_0_1, -R_1_2, +R_1_1, +R_1_0, -R_2_0, +R_0_0}, // EXT_XZY {+R_2_1, C_PI_2, +R_1_0, +R_0_0, -C_PI_2, +R_1_0, +R_0_0, -R_2_0, +R_2_2, +R_2_1, -R_0_1, +R_1_1}, // EXT_YXZ {+R_0_2, -C_PI_2, -R_1_2, +R_2_2, C_PI_2, +R_2_0, +R_2_2, +R_0_2, +R_0_0, -R_0_1, +R_2_1, +R_1_1}, // EXT_YZX {+R_1_2, -C_PI_2, -R_0_1, +R_0_0, C_PI_2, +R_0_1, +R_0_0, +R_1_0, +R_1_1, -R_1_2, +R_0_2, +R_2_2}, // EXT_ZXY {+R_0_2, C_PI_2, +R_1_0, +R_1_1, -C_PI_2, +R_2_1, +R_1_1, -R_0_1, +R_0_0, +R_0_2, -R_1_2, +R_2_2}, // EXT_ZYX {+R_0_0, C_ZERO, +R_2_1, +R_2_2, C_PI, +R_1_2, +R_1_1, +R_0_1, +R_0_2, +R_0_0, +R_1_0, -R_2_0}, // EXT_XYX {+R_0_0, C_ZERO, +R_2_1, +R_2_2, C_PI, +R_2_1, +R_2_2, +R_0_2, -R_0_1, +R_0_0, +R_2_0, +R_1_0}, // EXT_XZX {+R_1_1, C_ZERO, +R_0_2, +R_0_0, C_PI, -R_2_0, +R_0_0, +R_1_0, -R_1_2, +R_1_1, +R_0_1, +R_2_1}, // EXT_YXY {+R_1_1, C_ZERO, +R_0_2, +R_0_0, C_PI, +R_0_2, -R_0_0, +R_1_2, +R_1_0, +R_1_1, +R_2_1, -R_0_1}, // EXT_YZY {+R_2_2, C_ZERO, +R_1_0, +R_1_1, C_PI, +R_1_0, +R_0_0, +R_2_0, +R_2_1, +R_2_2, +R_0_2, -R_1_2}, // EXT_ZXZ {+R_2_2, C_ZERO, +R_1_0, +R_0_0, C_PI, +R_1_0, +R_0_0, +R_2_1, -R_2_0, +R_2_2, +R_1_2, +R_0_2}, // EXT_ZYZ }; T rotationR[12]; for (int i = 0; i < 12; i++) { int id = rotationR_[eulerAnglesType][i]; unsigned idx = std::abs(id); T value = 0.0f; if (idx < N_CONSTANTS) { value = constants_[idx]; } else { unsigned r_idx = idx - N_CONSTANTS; CV_DbgAssert(r_idx < 9); value = R.val[r_idx]; } bool isNegative = id < 0; if (isNegative) value = -value; rotationR[i] = value; } Vec angles; if (detail::isIntAngleType(eulerAnglesType)) { if (abs(rotationR[0] - 1) < CV_QUAT_CONVERT_THRESHOLD) { CV_LOG_WARNING(NULL,"Gimbal Lock occurs. Euler angles are non-unique, we set the third angle to 0"); angles = {std::atan2(rotationR[1], rotationR[2]), rotationR[3], 0}; return angles; } else if(abs(rotationR[0] + 1) < CV_QUAT_CONVERT_THRESHOLD) { CV_LOG_WARNING(NULL,"Gimbal Lock occurs. Euler angles are non-unique, we set the third angle to 0"); angles = {std::atan2(rotationR[4], rotationR[5]), rotationR[6], 0}; return angles; } } else // (!detail::isIntAngleType(eulerAnglesType)) { if (abs(rotationR[0] - 1) < CV_QUAT_CONVERT_THRESHOLD) { CV_LOG_WARNING(NULL,"Gimbal Lock occurs. Euler angles are non-unique, we set the first angle to 0"); angles = {0, rotationR[1], std::atan2(rotationR[2], rotationR[3])}; return angles; } else if (abs(rotationR[0] + 1) < CV_QUAT_CONVERT_THRESHOLD) { CV_LOG_WARNING(NULL,"Gimbal Lock occurs. Euler angles are non-unique, we set the first angle to 0"); angles = {0, rotationR[4], std::atan2(rotationR[5], rotationR[6])}; return angles; } } angles(0) = std::atan2(rotationR[7], rotationR[8]); if (detail::isTaitBryan(eulerAnglesType)) angles(1) = std::acos(rotationR[9]); else angles(1) = std::asin(rotationR[9]); angles(2) = std::atan2(rotationR[10], rotationR[11]); return angles; } } // namepsace //! @endcond #endif /*OPENCV_CORE_QUATERNION_INL_HPP*/