/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_ONLINEBOOSTING_HPP__ #define __OPENCV_ONLINEBOOSTING_HPP__ #include "opencv2/core.hpp" namespace cv { namespace detail { inline namespace tracking { //! @addtogroup tracking_detail //! @{ inline namespace online_boosting { //TODO based on the original implementation //http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml class BaseClassifier; class WeakClassifierHaarFeature; class EstimatedGaussDistribution; class ClassifierThreshold; class Detector; class StrongClassifierDirectSelection { public: StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit = 0 ); virtual ~StrongClassifierDirectSelection(); void initBaseClassifier(); bool update( const Mat& image, int target, float importance = 1.0 ); float eval( const Mat& response ); std::vector getSelectedWeakClassifier(); float classifySmooth( const std::vector& images, const Rect& sampleROI, int& idx ); int getNumBaseClassifier(); Size getPatchSize() const; Rect getROI() const; bool getUseFeatureExchange() const; int getReplacedClassifier() const; void replaceWeakClassifier( int idx ); int getSwappedClassifier() const; private: //StrongClassifier int numBaseClassifier; int numAllWeakClassifier; int numWeakClassifier; int iterInit; BaseClassifier** baseClassifier; std::vector alpha; cv::Size patchSize; bool useFeatureExchange; //StrongClassifierDirectSelection std::vector m_errorMask; std::vector m_errors; std::vector m_sumErrors; Detector* detector; Rect ROI; int replacedClassifier; int swappedClassifier; }; class BaseClassifier { public: BaseClassifier( int numWeakClassifier, int iterationInit ); BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls ); WeakClassifierHaarFeature** getReferenceWeakClassifier() { return weakClassifier; } ; void trainClassifier( const Mat& image, int target, float importance, std::vector& errorMask ); int selectBestClassifier( std::vector& errorMask, float importance, std::vector & errors ); int computeReplaceWeakestClassifier( const std::vector & errors ); void replaceClassifierStatistic( int sourceIndex, int targetIndex ); int getIdxOfNewWeakClassifier() { return m_idxOfNewWeakClassifier; } ; int eval( const Mat& image ); virtual ~BaseClassifier(); float getError( int curWeakClassifier ); void getErrors( float* errors ); int getSelectedClassifier() const; void replaceWeakClassifier( int index ); protected: void generateRandomClassifier(); WeakClassifierHaarFeature** weakClassifier; bool m_referenceWeakClassifier; int m_numWeakClassifier; int m_selectedClassifier; int m_idxOfNewWeakClassifier; std::vector m_wCorrect; std::vector m_wWrong; int m_iterationInit; }; class EstimatedGaussDistribution { public: EstimatedGaussDistribution(); EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma ); virtual ~EstimatedGaussDistribution(); void update( float value ); //, float timeConstant = -1.0); float getMean(); float getSigma(); void setValues( float mean, float sigma ); private: float m_mean; float m_sigma; float m_P_mean; float m_P_sigma; float m_R_mean; float m_R_sigma; }; class WeakClassifierHaarFeature { public: WeakClassifierHaarFeature(); virtual ~WeakClassifierHaarFeature(); bool update( float value, int target ); int eval( float value ); private: float sigma; float mean; ClassifierThreshold* m_classifier; void getInitialDistribution( EstimatedGaussDistribution *distribution ); void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples ); }; class Detector { public: Detector( StrongClassifierDirectSelection* classifier ); virtual ~Detector( void ); void classifySmooth( const std::vector& image, float minMargin = 0 ); int getNumDetections(); float getConfidence( int patchIdx ); float getConfidenceOfDetection( int detectionIdx ); float getConfidenceOfBestDetection() { return m_maxConfidence; } ; int getPatchIdxOfBestDetection(); int getPatchIdxOfDetection( int detectionIdx ); const std::vector & getIdxDetections() const { return m_idxDetections; } ; const std::vector & getConfidences() const { return m_confidences; } ; const cv::Mat & getConfImageDisplay() const { return m_confImageDisplay; } private: void prepareConfidencesMemory( int numPatches ); void prepareDetectionsMemory( int numDetections ); StrongClassifierDirectSelection* m_classifier; std::vector m_confidences; int m_sizeConfidences; int m_numDetections; std::vector m_idxDetections; int m_sizeDetections; int m_idxBestDetection; float m_maxConfidence; cv::Mat_ m_confMatrix; cv::Mat_ m_confMatrixSmooth; cv::Mat_ m_confImageDisplay; }; class ClassifierThreshold { public: ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples ); virtual ~ClassifierThreshold(); void update( float value, int target ); int eval( float value ); void* getDistribution( int target ); private: EstimatedGaussDistribution* m_posSamples; EstimatedGaussDistribution* m_negSamples; float m_threshold; int m_parity; }; } // namespace //! @} }}} // namespace #endif