// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2020, Huawei Technologies Co., Ltd. All rights reserved. // Third party copyrights are property of their respective owners. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Author: Liangqian Kong // Longbu Wang #ifndef OPENCV_CORE_DUALQUATERNION_HPP #define OPENCV_CORE_DUALQUATERNION_HPP #include #include namespace cv{ //! @addtogroup core //! @{ template class DualQuat; template std::ostream& operator<<(std::ostream&, const DualQuat<_Tp>&); /** * Dual quaternions were introduced to describe rotation together with translation while ordinary * quaternions can only describe rotation. It can be used for shortest path pose interpolation, * local pose optimization or volumetric deformation. More details can be found * - https://en.wikipedia.org/wiki/Dual_quaternion * - ["A beginners guide to dual-quaternions: what they are, how they work, and how to use them for 3D character hierarchies", Ben Kenwright, 2012](https://borodust.org/public/shared/beginner_dual_quats.pdf) * - ["Dual Quaternions", Yan-Bin Jia, 2013](http://web.cs.iastate.edu/~cs577/handouts/dual-quaternion.pdf) * - ["Geometric Skinning with Approximate Dual Quaternion Blending", Kavan, 2008](https://www.cs.utah.edu/~ladislav/kavan08geometric/kavan08geometric) * - http://rodolphe-vaillant.fr/?e=29 * * A unit dual quaternion can be classically represented as: * \f[ * \begin{equation} * \begin{split} * \sigma &= \left(r+\frac{\epsilon}{2}tr\right)\\ * &= [w, x, y, z, w\_, x\_, y\_, z\_] * \end{split} * \end{equation} * \f] * where \f$r, t\f$ represents the rotation (ordinary unit quaternion) and translation (pure ordinary quaternion) respectively. * * A general dual quaternions which consist of two quaternions is usually represented in form of: * \f[ * \sigma = p + \epsilon q * \f] * where the introduced dual unit \f$\epsilon\f$ satisfies \f$\epsilon^2 = \epsilon^3 =...=0\f$, and \f$p, q\f$ are quaternions. * * Alternatively, dual quaternions can also be interpreted as four components which are all [dual numbers](https://www.cs.utah.edu/~ladislav/kavan08geometric/kavan08geometric): * \f[ * \sigma = \hat{q}_w + \hat{q}_xi + \hat{q}_yj + \hat{q}_zk * \f] * If we set \f$\hat{q}_x, \hat{q}_y\f$ and \f$\hat{q}_z\f$ equal to 0, a dual quaternion is transformed to a dual number. see normalize(). * * If you want to create a dual quaternion, you can use: * * ``` * using namespace cv; * double angle = CV_PI; * * // create from eight number * DualQuatd dq1(1, 2, 3, 4, 5, 6, 7, 8); //p = [1,2,3,4]. q=[5,6,7,8] * * // create from Vec * Vec v{1,2,3,4,5,6,7,8}; * DualQuatd dq_v{v}; * * // create from two quaternion * Quatd p(1, 2, 3, 4); * Quatd q(5, 6, 7, 8); * DualQuatd dq2 = DualQuatd::createFromQuat(p, q); * * // create from an angle, an axis and a translation * Vec3d axis{0, 0, 1}; * Vec3d trans{3, 4, 5}; * DualQuatd dq3 = DualQuatd::createFromAngleAxisTrans(angle, axis, trans); * * // If you already have an instance of class Affine3, then you can use * Affine3d R = dq3.toAffine3(); * DualQuatd dq4 = DualQuatd::createFromAffine3(R); * * // or create directly by affine transformation matrix Rt * // see createFromMat() in detail for the form of Rt * Matx44d Rt = dq3.toMat(); * DualQuatd dq5 = DualQuatd::createFromMat(Rt); * * // Any rotation + translation movement can * // be expressed as a rotation + translation around the same line in space (expressed by Plucker * // coords), and here's a way to represent it this way. * Vec3d axis{1, 1, 1}; // axis will be normalized in createFromPitch * Vec3d trans{3, 4 ,5}; * axis = axis / std::sqrt(axis.dot(axis));// The formula for computing moment that I use below requires a normalized axis * Vec3d moment = 1.0 / 2 * (trans.cross(axis) + axis.cross(trans.cross(axis)) * * std::cos(rotation_angle / 2) / std::sin(rotation_angle / 2)); * double d = trans.dot(qaxis); * DualQuatd dq6 = DualQuatd::createFromPitch(angle, d, axis, moment); * ``` * * A point \f$v=(x, y, z)\f$ in form of dual quaternion is \f$[1+\epsilon v]=[1,0,0,0,0,x,y,z]\f$. * The transformation of a point \f$v_1\f$ to another point \f$v_2\f$ under the dual quaternion \f$\sigma\f$ is * \f[ * 1 + \epsilon v_2 = \sigma * (1 + \epsilon v_1) * \sigma^{\star} * \f] * where \f$\sigma^{\star}=p^*-\epsilon q^*.\f$ * * A line in the \f$Pl\ddot{u}cker\f$ coordinates \f$(\hat{l}, m)\f$ defined by the dual quaternion \f$l=\hat{l}+\epsilon m\f$. * To transform a line, \f[l_2 = \sigma * l_1 * \sigma^*,\f] where \f$\sigma=r+\frac{\epsilon}{2}rt\f$ and * \f$\sigma^*=p^*+\epsilon q^*\f$. * * To extract the Vec or Vec, see toVec(); * * To extract the affine transformation matrix, see toMat(); * * To extract the instance of Affine3, see toAffine3(); * * If two quaternions \f$q_0, q_1\f$ are needed to be interpolated, you can use sclerp() * ``` * DualQuatd::sclerp(q0, q1, t) * ``` * or dqblend(). * ``` * DualQuatd::dqblend(q0, q1, t) * ``` * With more than two dual quaternions to be blended, you can use generalize linear dual quaternion blending * with the corresponding weights, i.e. gdqblend(). * */ template class CV_EXPORTS DualQuat{ static_assert(std::is_floating_point<_Tp>::value, "Dual quaternion only make sense with type of float or double"); using value_type = _Tp; public: static constexpr _Tp CV_DUAL_QUAT_EPS = (_Tp)1.e-6; DualQuat(); /** * @brief create from eight same type numbers. */ DualQuat(const _Tp w, const _Tp x, const _Tp y, const _Tp z, const _Tp w_, const _Tp x_, const _Tp y_, const _Tp z_); /** * @brief create from a double or float vector. */ DualQuat(const Vec<_Tp, 8> &q); _Tp w, x, y, z, w_, x_, y_, z_; /** * @brief create Dual Quaternion from two same type quaternions p and q. * A Dual Quaternion \f$\sigma\f$ has the form: * \f[\sigma = p + \epsilon q\f] * where p and q are defined as follows: * \f[\begin{equation} * \begin{split} * p &= w + x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}\\ * q &= w\_ + x\_\boldsymbol{i} + y\_\boldsymbol{j} + z\_\boldsymbol{k}. * \end{split} * \end{equation} * \f] * The p and q are the real part and dual part respectively. * @param realPart a quaternion, real part of dual quaternion. * @param dualPart a quaternion, dual part of dual quaternion. * @sa Quat */ static DualQuat<_Tp> createFromQuat(const Quat<_Tp> &realPart, const Quat<_Tp> &dualPart); /** * @brief create a dual quaternion from a rotation angle \f$\theta\f$, a rotation axis * \f$\boldsymbol{u}\f$ and a translation \f$\boldsymbol{t}\f$. * It generates a dual quaternion \f$\sigma\f$ in the form of * \f[\begin{equation} * \begin{split} * \sigma &= r + \frac{\epsilon}{2}\boldsymbol{t}r \\ * &= [\cos(\frac{\theta}{2}), \boldsymbol{u}\sin(\frac{\theta}{2})] * + \frac{\epsilon}{2}[0, \boldsymbol{t}][[\cos(\frac{\theta}{2}), * \boldsymbol{u}\sin(\frac{\theta}{2})]]\\ * &= \cos(\frac{\theta}{2}) + \boldsymbol{u}\sin(\frac{\theta}{2}) * + \frac{\epsilon}{2}(-(\boldsymbol{t} \cdot \boldsymbol{u})\sin(\frac{\theta}{2}) * + \boldsymbol{t}\cos(\frac{\theta}{2}) + \boldsymbol{u} \times \boldsymbol{t} \sin(\frac{\theta}{2})). * \end{split} * \end{equation}\f] * @param angle rotation angle. * @param axis rotation axis. * @param translation a vector of length 3. * @note Axis will be normalized in this function. And translation is applied * after the rotation. Use @ref createFromQuat(r, r * t / 2) to create a dual quaternion * which translation is applied before rotation. * @sa Quat */ static DualQuat<_Tp> createFromAngleAxisTrans(const _Tp angle, const Vec<_Tp, 3> &axis, const Vec<_Tp, 3> &translation); /** * @brief Transform this dual quaternion to an affine transformation matrix \f$M\f$. * Dual quaternion consists of a rotation \f$r=[a,b,c,d]\f$ and a translation \f$t=[\Delta x,\Delta y,\Delta z]\f$. The * affine transformation matrix \f$M\f$ has the form * \f[ * \begin{bmatrix} * 1-2(e_2^2 +e_3^2) &2(e_1e_2-e_0e_3) &2(e_0e_2+e_1e_3) &\Delta x\\ * 2(e_0e_3+e_1e_2) &1-2(e_1^2+e_3^2) &2(e_2e_3-e_0e_1) &\Delta y\\ * 2(e_1e_3-e_0e_2) &2(e_0e_1+e_2e_3) &1-2(e_1^2-e_2^2) &\Delta z\\ * 0&0&0&1 * \end{bmatrix} * \f] * if A is a matrix consisting of n points to be transformed, this could be achieved by * \f[ * new\_A = M * A * \f] * where A has the form * \f[ * \begin{bmatrix} * x_0& x_1& x_2&...&x_n\\ * y_0& y_1& y_2&...&y_n\\ * z_0& z_1& z_2&...&z_n\\ * 1&1&1&...&1 * \end{bmatrix} * \f] * where the same subscript represent the same point. The size of A should be \f$[4,n]\f$. * and the same size for matrix new_A. * @param _R 4x4 matrix that represents rotations and translation. * @note Translation is applied after the rotation. Use createFromQuat(r, r * t / 2) to create * a dual quaternion which translation is applied before rotation. */ static DualQuat<_Tp> createFromMat(InputArray _R); /** * @brief create dual quaternion from an affine matrix. The definition of affine matrix can refer to createFromMat() */ static DualQuat<_Tp> createFromAffine3(const Affine3<_Tp> &R); /** * @brief A dual quaternion is a vector in form of * \f[ * \begin{equation} * \begin{split} * \sigma &=\boldsymbol{p} + \epsilon \boldsymbol{q}\\ * &= \cos\hat{\frac{\theta}{2}}+\overline{\hat{l}}\sin\frac{\hat{\theta}}{2} * \end{split} * \end{equation} * \f] * where \f$\hat{\theta}\f$ is dual angle and \f$\overline{\hat{l}}\f$ is dual axis: * \f[ * \hat{\theta}=\theta + \epsilon d,\\ * \overline{\hat{l}}= \hat{l} +\epsilon m. * \f] * In this representation, \f$\theta\f$ is rotation angle and \f$(\hat{l},m)\f$ is the screw axis, d is the translation distance along the axis. * * @param angle rotation angle. * @param d translation along the rotation axis. * @param axis rotation axis represented by quaternion with w = 0. * @param moment the moment of line, and it should be orthogonal to axis. * @note Translation is applied after the rotation. Use createFromQuat(r, r * t / 2) to create * a dual quaternion which translation is applied before rotation. */ static DualQuat<_Tp> createFromPitch(const _Tp angle, const _Tp d, const Vec<_Tp, 3> &axis, const Vec<_Tp, 3> &moment); /** * @brief return a quaternion which represent the real part of dual quaternion. * The definition of real part is in createFromQuat(). * @sa createFromQuat, getDualPart */ Quat<_Tp> getRealPart() const; /** * @brief return a quaternion which represent the dual part of dual quaternion. * The definition of dual part is in createFromQuat(). * @sa createFromQuat, getRealPart */ Quat<_Tp> getDualPart() const; /** * @brief return the conjugate of a dual quaternion. * \f[ * \begin{equation} * \begin{split} * \sigma^* &= (p + \epsilon q)^* * &= (p^* + \epsilon q^*) * \end{split} * \end{equation} * \f] * @param dq a dual quaternion. */ template friend DualQuat conjugate(const DualQuat &dq); /** * @brief return the conjugate of a dual quaternion. * \f[ * \begin{equation} * \begin{split} * \sigma^* &= (p + \epsilon q)^* * &= (p^* + \epsilon q^*) * \end{split} * \end{equation} * \f] */ DualQuat<_Tp> conjugate() const; /** * @brief return the rotation in quaternion form. */ Quat<_Tp> getRotation(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const; /** * @brief return the translation vector. * The rotation \f$r\f$ in this dual quaternion \f$\sigma\f$ is applied before translation \f$t\f$. * The dual quaternion \f$\sigma\f$ is defined as * \f[\begin{equation} * \begin{split} * \sigma &= p + \epsilon q \\ * &= r + \frac{\epsilon}{2}{t}r. * \end{split} * \end{equation}\f] * Thus, the translation can be obtained as follows * \f[t = 2qp^*.\f] * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion * and this function will save some computations. * @note This dual quaternion's translation is applied after the rotation. */ Vec<_Tp, 3> getTranslation(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const; /** * @brief return the norm \f$||\sigma||\f$ of dual quaternion \f$\sigma = p + \epsilon q\f$. * \f[ * \begin{equation} * \begin{split} * ||\sigma|| &= \sqrt{\sigma * \sigma^*} \\ * &= ||p|| + \epsilon \frac{p \cdot q}{||p||}. * \end{split} * \end{equation} * \f] * Generally speaking, the norm of a not unit dual * quaternion is a dual number. For convenience, we return it in the form of a dual quaternion * , i.e. * \f[ ||\sigma|| = [||p||, 0, 0, 0, \frac{p \cdot q}{||p||}, 0, 0, 0].\f] * * @note The data type of dual number is dual quaternion. */ DualQuat<_Tp> norm() const; /** * @brief return a normalized dual quaternion. * A dual quaternion can be expressed as * \f[ * \begin{equation} * \begin{split} * \sigma &= p + \epsilon q\\ * &=||\sigma||\left(r+\frac{1}{2}tr\right) * \end{split} * \end{equation} * \f] * where \f$r, t\f$ represents the rotation (ordinary quaternion) and translation (pure ordinary quaternion) respectively, * and \f$||\sigma||\f$ is the norm of dual quaternion(a dual number). * A dual quaternion is unit if and only if * \f[ * ||p||=1, p \cdot q=0 * \f] * where \f$\cdot\f$ means dot product. * The process of normalization is * \f[ * \sigma_{u}=\frac{\sigma}{||\sigma||} * \f] * Next, we simply proof \f$\sigma_u\f$ is a unit dual quaternion: * \f[ * \renewcommand{\Im}{\operatorname{Im}} * \begin{equation} * \begin{split} * \sigma_{u}=\frac{\sigma}{||\sigma||}&=\frac{p + \epsilon q}{||p||+\epsilon\frac{p\cdot q}{||p||}}\\ * &=\frac{p}{||p||}+\epsilon\left(\frac{q}{||p||}-p\frac{p\cdot q}{||p||^3}\right)\\ * &=\frac{p}{||p||}+\epsilon\frac{1}{||p||^2}\left(qp^{*}-p\cdot q\right)\frac{p}{||p||}\\ * &=\frac{p}{||p||}+\epsilon\frac{1}{||p||^2}\Im(qp^*)\frac{p}{||p||}.\\ * \end{split} * \end{equation} * \f] * As expected, the real part is a rotation and dual part is a pure quaternion. */ DualQuat<_Tp> normalize() const; /** * @brief if \f$\sigma = p + \epsilon q\f$ is a dual quaternion, p is not zero, * the inverse dual quaternion is * \f[\sigma^{-1} = \frac{\sigma^*}{||\sigma||^2}, \f] * or equivalentlly, * \f[\sigma^{-1} = p^{-1} - \epsilon p^{-1}qp^{-1}.\f] * @param dq a dual quaternion. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion * and this function will save some computations. */ template friend DualQuat inv(const DualQuat &dq, QuatAssumeType assumeUnit); /** * @brief if \f$\sigma = p + \epsilon q\f$ is a dual quaternion, p is not zero, * the inverse dual quaternion is * \f[\sigma^{-1} = \frac{\sigma^*}{||\sigma||^2}, \f] * or equivalentlly, * \f[\sigma^{-1} = p^{-1} - \epsilon p^{-1}qp^{-1}.\f] * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion * and this function will save some computations. */ DualQuat<_Tp> inv(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const; /** * @brief return the dot product of two dual quaternion. * @param p other dual quaternion. */ _Tp dot(DualQuat<_Tp> p) const; /** ** @brief return the value of \f$p^t\f$ where p is a dual quaternion. * This could be calculated as: * \f[ * p^t = \exp(t\ln p) * \f] * @param dq a dual quaternion. * @param t index of power function. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion * and this function will save some computations. */ template friend DualQuat power(const DualQuat &dq, const T t, QuatAssumeType assumeUnit); /** ** @brief return the value of \f$p^t\f$ where p is a dual quaternion. * This could be calculated as: * \f[ * p^t = \exp(t\ln p) * \f] * * @param t index of power function. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion * and this function will save some computations. */ DualQuat<_Tp> power(const _Tp t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const; /** * @brief return the value of \f$p^q\f$ where p and q are dual quaternions. * This could be calculated as: * \f[ * p^q = \exp(q\ln p) * \f] * @param p a dual quaternion. * @param q a dual quaternion. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion p assume to be a dual unit quaternion * and this function will save some computations. */ template friend DualQuat power(const DualQuat& p, const DualQuat& q, QuatAssumeType assumeUnit); /** * @brief return the value of \f$p^q\f$ where p and q are dual quaternions. * This could be calculated as: * \f[ * p^q = \exp(q\ln p) * \f] * * @param q a dual quaternion * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a dual unit quaternion * and this function will save some computations. */ DualQuat<_Tp> power(const DualQuat<_Tp>& q, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const; /** * @brief return the value of exponential function value * @param dq a dual quaternion. */ template friend DualQuat exp(const DualQuat &dq); /** * @brief return the value of exponential function value */ DualQuat<_Tp> exp() const; /** * @brief return the value of logarithm function value * * @param dq a dual quaternion. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, dual quaternion dq assume to be a unit dual quaternion * and this function will save some computations. */ template friend DualQuat log(const DualQuat &dq, QuatAssumeType assumeUnit); /** * @brief return the value of logarithm function value * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion * and this function will save some computations. */ DualQuat<_Tp> log(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const; /** * @brief Transform this dual quaternion to a vector. */ Vec<_Tp, 8> toVec() const; /** * @brief Transform this dual quaternion to a affine transformation matrix * the form of matrix, see createFromMat(). */ Matx<_Tp, 4, 4> toMat(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const; /** * @brief Transform this dual quaternion to a instance of Affine3. */ Affine3<_Tp> toAffine3(QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT) const; /** * @brief The screw linear interpolation(ScLERP) is an extension of spherical linear interpolation of dual quaternion. * If \f$\sigma_1\f$ and \f$\sigma_2\f$ are two dual quaternions representing the initial and final pose. * The interpolation of ScLERP function can be defined as: * \f[ * ScLERP(t;\sigma_1,\sigma_2) = \sigma_1 * (\sigma_1^{-1} * \sigma_2)^t, t\in[0,1] * \f] * * @param q1 a dual quaternion represents a initial pose. * @param q2 a dual quaternion represents a final pose. * @param t interpolation parameter * @param directChange if true, it always return the shortest path. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion * and this function will save some computations. * * For example * ``` * double angle1 = CV_PI / 2; * Vec3d axis{0, 0, 1}; * Vec3d t(0, 0, 3); * DualQuatd initial = DualQuatd::createFromAngleAxisTrans(angle1, axis, t); * double angle2 = CV_PI; * DualQuatd final = DualQuatd::createFromAngleAxisTrans(angle2, axis, t); * DualQuatd inter = DualQuatd::sclerp(initial, final, 0.5); * ``` */ static DualQuat<_Tp> sclerp(const DualQuat<_Tp> &q1, const DualQuat<_Tp> &q2, const _Tp t, bool directChange=true, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT); /** * @brief The method of Dual Quaternion linear Blending(DQB) is to compute a transformation between dual quaternion * \f$q_1\f$ and \f$q_2\f$ and can be defined as: * \f[ * DQB(t;{\boldsymbol{q}}_1,{\boldsymbol{q}}_2)= * \frac{(1-t){\boldsymbol{q}}_1+t{\boldsymbol{q}}_2}{||(1-t){\boldsymbol{q}}_1+t{\boldsymbol{q}}_2||}. * \f] * where \f$q_1\f$ and \f$q_2\f$ are unit dual quaternions representing the input transformations. * If you want to use DQB that works for more than two rigid transformations, see @ref gdqblend * * @param q1 a unit dual quaternion representing the input transformations. * @param q2 a unit dual quaternion representing the input transformations. * @param t parameter \f$t\in[0,1]\f$. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, this dual quaternion assume to be a unit dual quaternion * and this function will save some computations. * * @sa gdqblend */ static DualQuat<_Tp> dqblend(const DualQuat<_Tp> &q1, const DualQuat<_Tp> &q2, const _Tp t, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT); /** * @brief The generalized Dual Quaternion linear Blending works for more than two rigid transformations. * If these transformations are expressed as unit dual quaternions \f$q_1,...,q_n\f$ with convex weights * \f$w = (w_1,...,w_n)\f$, the generalized DQB is simply * \f[ * gDQB(\boldsymbol{w};{\boldsymbol{q}}_1,...,{\boldsymbol{q}}_n)=\frac{w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n} * {||w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n||}. * \f] * @param dualquat vector of dual quaternions * @param weights vector of weights, the size of weights should be the same as dualquat, and the weights should * satisfy \f$\sum_0^n w_{i} = 1\f$ and \f$w_i>0\f$. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, these dual quaternions assume to be unit quaternions * and this function will save some computations. * @note the type of weights' element should be the same as the date type of dual quaternion inside the dualquat. */ template static DualQuat<_Tp> gdqblend(const Vec, cn> &dualquat, InputArray weights, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT); /** * @brief The generalized Dual Quaternion linear Blending works for more than two rigid transformations. * If these transformations are expressed as unit dual quaternions \f$q_1,...,q_n\f$ with convex weights * \f$w = (w_1,...,w_n)\f$, the generalized DQB is simply * \f[ * gDQB(\boldsymbol{w};{\boldsymbol{q}}_1,...,{\boldsymbol{q}}_n)=\frac{w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n} * {||w_1{\boldsymbol{q}}_1+...+w_n{\boldsymbol{q}}_n||}. * \f] * @param dualquat The dual quaternions which have 8 channels and 1 row or 1 col. * @param weights vector of weights, the size of weights should be the same as dualquat, and the weights should * satisfy \f$\sum_0^n w_{i} = 1\f$ and \f$w_i>0\f$. * @param assumeUnit if @ref QUAT_ASSUME_UNIT, these dual quaternions assume to be unit quaternions * and this function will save some computations. * @note the type of weights' element should be the same as the date type of dual quaternion inside the dualquat. */ static DualQuat<_Tp> gdqblend(InputArray dualquat, InputArray weights, QuatAssumeType assumeUnit=QUAT_ASSUME_NOT_UNIT); /** * @brief Return opposite dual quaternion \f$-p\f$ * which satisfies \f$p + (-p) = 0.\f$ * * For example * ``` * DualQuatd q{1, 2, 3, 4, 5, 6, 7, 8}; * std::cout << -q << std::endl; // [-1, -2, -3, -4, -5, -6, -7, -8] * ``` */ DualQuat<_Tp> operator-() const; /** * @brief return true if two dual quaternions p and q are nearly equal, i.e. when the absolute * value of each \f$p_i\f$ and \f$q_i\f$ is less than CV_DUAL_QUAT_EPS. */ bool operator==(const DualQuat<_Tp>&) const; /** * @brief Subtraction operator of two dual quaternions p and q. * It returns a new dual quaternion that each value is the sum of \f$p_i\f$ and \f$-q_i\f$. * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12}; * std::cout << p - q << std::endl; //[-4, -4, -4, -4, 4, -4, -4, -4] * ``` */ DualQuat<_Tp> operator-(const DualQuat<_Tp>&) const; /** * @brief Subtraction assignment operator of two dual quaternions p and q. * It subtracts right operand from the left operand and assign the result to left operand. * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12}; * p -= q; // equivalent to p = p - q * std::cout << p << std::endl; //[-4, -4, -4, -4, 4, -4, -4, -4] * * ``` */ DualQuat<_Tp>& operator-=(const DualQuat<_Tp>&); /** * @brief Addition operator of two dual quaternions p and q. * It returns a new dual quaternion that each value is the sum of \f$p_i\f$ and \f$q_i\f$. * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12}; * std::cout << p + q << std::endl; //[6, 8, 10, 12, 14, 16, 18, 20] * ``` */ DualQuat<_Tp> operator+(const DualQuat<_Tp>&) const; /** * @brief Addition assignment operator of two dual quaternions p and q. * It adds right operand to the left operand and assign the result to left operand. * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12}; * p += q; // equivalent to p = p + q * std::cout << p << std::endl; //[6, 8, 10, 12, 14, 16, 18, 20] * * ``` */ DualQuat<_Tp>& operator+=(const DualQuat<_Tp>&); /** * @brief Multiplication assignment operator of two quaternions. * It multiplies right operand with the left operand and assign the result to left operand. * * Rule of dual quaternion multiplication: * The dual quaternion can be written as an ordered pair of quaternions [A, B]. Thus * \f[ * \begin{equation} * \begin{split} * p * q &= [A, B][C, D]\\ * &=[AC, AD + BC] * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12}; * p *= q; * std::cout << p << std::endl; //[-60, 12, 30, 24, -216, 80, 124, 120] * ``` */ DualQuat<_Tp>& operator*=(const DualQuat<_Tp>&); /** * @brief Multiplication assignment operator of a quaternions and a scalar. * It multiplies right operand with the left operand and assign the result to left operand. * * Rule of dual quaternion multiplication with a scalar: * \f[ * \begin{equation} * \begin{split} * p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\ * &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s]. * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double s = 2.0; * p *= s; * std::cout << p << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16] * ``` * @note the type of scalar should be equal to the dual quaternion. */ DualQuat<_Tp> operator*=(const _Tp s); /** * @brief Multiplication operator of two dual quaternions q and p. * Multiplies values on either side of the operator. * * Rule of dual quaternion multiplication: * The dual quaternion can be written as an ordered pair of quaternions [A, B]. Thus * \f[ * \begin{equation} * \begin{split} * p * q &= [A, B][C, D]\\ * &=[AC, AD + BC] * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12}; * std::cout << p * q << std::endl; //[-60, 12, 30, 24, -216, 80, 124, 120] * ``` */ DualQuat<_Tp> operator*(const DualQuat<_Tp>&) const; /** * @brief Division operator of a dual quaternions and a scalar. * It divides left operand with the right operand and assign the result to left operand. * * Rule of dual quaternion division with a scalar: * \f[ * \begin{equation} * \begin{split} * p / s &= [w, x, y, z, w\_, x\_, y\_, z\_] / s\\ * &=[w/s, x/s, y/s, z/s, w\_/s, x\_/s, y\_/s, z\_/s]. * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double s = 2.0; * p /= s; // equivalent to p = p / s * std::cout << p << std::endl; //[0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] * ``` * @note the type of scalar should be equal to this dual quaternion. */ DualQuat<_Tp> operator/(const _Tp s) const; /** * @brief Division operator of two dual quaternions p and q. * Divides left hand operand by right hand operand. * * Rule of dual quaternion division with a dual quaternion: * \f[ * \begin{equation} * \begin{split} * p / q &= p * q.inv()\\ * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12}; * std::cout << p / q << std::endl; // equivalent to p * q.inv() * ``` */ DualQuat<_Tp> operator/(const DualQuat<_Tp>&) const; /** * @brief Division assignment operator of two dual quaternions p and q; * It divides left operand with the right operand and assign the result to left operand. * * Rule of dual quaternion division with a quaternion: * \f[ * \begin{equation} * \begin{split} * p / q&= p * q.inv()\\ * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * DualQuatd q{5, 6, 7, 8, 9, 10, 11, 12}; * p /= q; // equivalent to p = p * q.inv() * std::cout << p << std::endl; * ``` */ DualQuat<_Tp>& operator/=(const DualQuat<_Tp>&); /** * @brief Division assignment operator of a dual quaternions and a scalar. * It divides left operand with the right operand and assign the result to left operand. * * Rule of dual quaternion division with a scalar: * \f[ * \begin{equation} * \begin{split} * p / s &= [w, x, y, z, w\_, x\_, y\_ ,z\_] / s\\ * &=[w / s, x / s, y / s, z / s, w\_ / \space s, x\_ / \space s, y\_ / \space s, z\_ / \space s]. * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double s = 2.0;; * p /= s; // equivalent to p = p / s * std::cout << p << std::endl; //[0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0] * ``` * @note the type of scalar should be equal to the dual quaternion. */ Quat<_Tp>& operator/=(const _Tp s); /** * @brief Addition operator of a scalar and a dual quaternions. * Adds right hand operand from left hand operand. * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double scalar = 2.0; * std::cout << scalar + p << std::endl; //[3.0, 2, 3, 4, 5, 6, 7, 8] * ``` * @note the type of scalar should be equal to the dual quaternion. */ template friend DualQuat cv::operator+(const T s, const DualQuat&); /** * @brief Addition operator of a dual quaternions and a scalar. * Adds right hand operand from left hand operand. * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double scalar = 2.0; * std::cout << p + scalar << std::endl; //[3.0, 2, 3, 4, 5, 6, 7, 8] * ``` * @note the type of scalar should be equal to the dual quaternion. */ template friend DualQuat cv::operator+(const DualQuat&, const T s); /** * @brief Multiplication operator of a scalar and a dual quaternions. * It multiplies right operand with the left operand and assign the result to left operand. * * Rule of dual quaternion multiplication with a scalar: * \f[ * \begin{equation} * \begin{split} * p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\ * &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s]. * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double s = 2.0; * std::cout << s * p << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16] * ``` * @note the type of scalar should be equal to the dual quaternion. */ template friend DualQuat cv::operator*(const T s, const DualQuat&); /** * @brief Subtraction operator of a dual quaternion and a scalar. * Subtracts right hand operand from left hand operand. * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double scalar = 2.0; * std::cout << p - scalar << std::endl; //[-1, 2, 3, 4, 5, 6, 7, 8] * ``` * @note the type of scalar should be equal to the dual quaternion. */ template friend DualQuat cv::operator-(const DualQuat&, const T s); /** * @brief Subtraction operator of a scalar and a dual quaternions. * Subtracts right hand operand from left hand operand. * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double scalar = 2.0; * std::cout << scalar - p << std::endl; //[1.0, -2, -3, -4, -5, -6, -7, -8] * ``` * @note the type of scalar should be equal to the dual quaternion. */ template friend DualQuat cv::operator-(const T s, const DualQuat&); /** * @brief Multiplication operator of a dual quaternions and a scalar. * It multiplies right operand with the left operand and assign the result to left operand. * * Rule of dual quaternion multiplication with a scalar: * \f[ * \begin{equation} * \begin{split} * p * s &= [w, x, y, z, w\_, x\_, y\_, z\_] * s\\ * &=[w s, x s, y s, z s, w\_ \space s, x\_ \space s, y\_ \space s, z\_ \space s]. * \end{split} * \end{equation} * \f] * * For example * ``` * DualQuatd p{1, 2, 3, 4, 5, 6, 7, 8}; * double s = 2.0; * std::cout << p * s << std::endl; //[2, 4, 6, 8, 10, 12, 14, 16] * ``` * @note the type of scalar should be equal to the dual quaternion. */ template friend DualQuat cv::operator*(const DualQuat&, const T s); template friend std::ostream& cv::operator<<(std::ostream&, const DualQuat&); }; using DualQuatd = DualQuat; using DualQuatf = DualQuat; //! @} core }//namespace #include "dualquaternion.inl.hpp" #endif /* OPENCV_CORE_QUATERNION_HPP */