// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html // This code is also subject to the license terms in the LICENSE_WillowGarage.md file found in this module's directory #ifndef __OPENCV_RGBD_DEPTH_HPP__ #define __OPENCV_RGBD_DEPTH_HPP__ #include #include namespace cv { namespace rgbd { //! @addtogroup rgbd //! @{ /** Checks if the value is a valid depth. For CV_16U or CV_16S, the convention is to be invalid if it is * a limit. For a float/double, we just check if it is a NaN * @param depth the depth to check for validity */ CV_EXPORTS inline bool isValidDepth(const float & depth) { return !cvIsNaN(depth); } CV_EXPORTS inline bool isValidDepth(const double & depth) { return !cvIsNaN(depth); } CV_EXPORTS inline bool isValidDepth(const short int & depth) { return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); } CV_EXPORTS inline bool isValidDepth(const unsigned short int & depth) { return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); } CV_EXPORTS inline bool isValidDepth(const int & depth) { return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); } CV_EXPORTS inline bool isValidDepth(const unsigned int & depth) { return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); } /** Object that can compute the normals in an image. * It is an object as it can cache data for speed efficiency * The implemented methods are either: * - FALS (the fastest) and SRI from * ``Fast and Accurate Computation of Surface Normals from Range Images`` * by H. Badino, D. Huber, Y. Park and T. Kanade * - the normals with bilateral filtering on a depth image from * ``Gradient Response Maps for Real-Time Detection of Texture-Less Objects`` * by S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit */ class CV_EXPORTS_W RgbdNormals: public Algorithm { public: enum RGBD_NORMALS_METHOD { RGBD_NORMALS_METHOD_FALS = 0, RGBD_NORMALS_METHOD_LINEMOD = 1, RGBD_NORMALS_METHOD_SRI = 2 }; RgbdNormals() : rows_(0), cols_(0), depth_(0), K_(Mat()), window_size_(0), method_(RGBD_NORMALS_METHOD_FALS), rgbd_normals_impl_(0) { } /** Constructor * @param rows the number of rows of the depth image normals will be computed on * @param cols the number of cols of the depth image normals will be computed on * @param depth the depth of the normals (only CV_32F or CV_64F) * @param K the calibration matrix to use * @param window_size the window size to compute the normals: can only be 1,3,5 or 7 * @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS */ RgbdNormals(int rows, int cols, int depth, InputArray K, int window_size = 5, int method = RgbdNormals::RGBD_NORMALS_METHOD_FALS); ~RgbdNormals(); CV_WRAP static Ptr create(int rows, int cols, int depth, InputArray K, int window_size = 5, int method = RgbdNormals::RGBD_NORMALS_METHOD_FALS); /** Given a set of 3d points in a depth image, compute the normals at each point. * @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S * @param normals a rows x cols x 3 matrix */ CV_WRAP_AS(apply) void operator()(InputArray points, OutputArray normals) const; /** Initializes some data that is cached for later computation * If that function is not called, it will be called the first time normals are computed */ CV_WRAP void initialize() const; CV_WRAP int getRows() const { return rows_; } CV_WRAP void setRows(int val) { rows_ = val; } CV_WRAP int getCols() const { return cols_; } CV_WRAP void setCols(int val) { cols_ = val; } CV_WRAP int getWindowSize() const { return window_size_; } CV_WRAP void setWindowSize(int val) { window_size_ = val; } CV_WRAP int getDepth() const { return depth_; } CV_WRAP void setDepth(int val) { depth_ = val; } CV_WRAP cv::Mat getK() const { return K_; } CV_WRAP void setK(const cv::Mat &val) { K_ = val; } CV_WRAP int getMethod() const { return method_; } CV_WRAP void setMethod(int val) { method_ = val; } protected: void initialize_normals_impl(int rows, int cols, int depth, const Mat & K, int window_size, int method) const; int rows_, cols_, depth_; Mat K_; int window_size_; int method_; mutable void* rgbd_normals_impl_; }; /** Object that can clean a noisy depth image */ class CV_EXPORTS_W DepthCleaner: public Algorithm { public: /** NIL method is from * ``Modeling Kinect Sensor Noise for Improved 3d Reconstruction and Tracking`` * by C. Nguyen, S. Izadi, D. Lovel */ enum DEPTH_CLEANER_METHOD { DEPTH_CLEANER_NIL }; DepthCleaner() : depth_(0), window_size_(0), method_(DEPTH_CLEANER_NIL), depth_cleaner_impl_(0) { } /** Constructor * @param depth the depth of the normals (only CV_32F or CV_64F) * @param window_size the window size to compute the normals: can only be 1,3,5 or 7 * @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS */ DepthCleaner(int depth, int window_size = 5, int method = DepthCleaner::DEPTH_CLEANER_NIL); ~DepthCleaner(); CV_WRAP static Ptr create(int depth, int window_size = 5, int method = DepthCleaner::DEPTH_CLEANER_NIL); /** Given a set of 3d points in a depth image, compute the normals at each point. * @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S * @param depth a rows x cols matrix of the cleaned up depth */ CV_WRAP_AS(apply) void operator()(InputArray points, OutputArray depth) const; /** Initializes some data that is cached for later computation * If that function is not called, it will be called the first time normals are computed */ CV_WRAP void initialize() const; CV_WRAP int getWindowSize() const { return window_size_; } CV_WRAP void setWindowSize(int val) { window_size_ = val; } CV_WRAP int getDepth() const { return depth_; } CV_WRAP void setDepth(int val) { depth_ = val; } CV_WRAP int getMethod() const { return method_; } CV_WRAP void setMethod(int val) { method_ = val; } protected: void initialize_cleaner_impl() const; int depth_; int window_size_; int method_; mutable void* depth_cleaner_impl_; }; /** Registers depth data to an external camera * Registration is performed by creating a depth cloud, transforming the cloud by * the rigid body transformation between the cameras, and then projecting the * transformed points into the RGB camera. * * uv_rgb = K_rgb * [R | t] * z * inv(K_ir) * uv_ir * * Currently does not check for negative depth values. * * @param unregisteredCameraMatrix the camera matrix of the depth camera * @param registeredCameraMatrix the camera matrix of the external camera * @param registeredDistCoeffs the distortion coefficients of the external camera * @param Rt the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame. * @param unregisteredDepth the input depth data * @param outputImagePlaneSize the image plane dimensions of the external camera (width, height) * @param registeredDepth the result of transforming the depth into the external camera * @param depthDilation whether or not the depth is dilated to avoid holes and occlusion errors (optional) */ CV_EXPORTS_W void registerDepth(InputArray unregisteredCameraMatrix, InputArray registeredCameraMatrix, InputArray registeredDistCoeffs, InputArray Rt, InputArray unregisteredDepth, const Size& outputImagePlaneSize, OutputArray registeredDepth, bool depthDilation=false); /** * @param depth the depth image * @param in_K * @param in_points the list of xy coordinates * @param points3d the resulting 3d points */ CV_EXPORTS_W void depthTo3dSparse(InputArray depth, InputArray in_K, InputArray in_points, OutputArray points3d); /** Converts a depth image to an organized set of 3d points. * The coordinate system is x pointing left, y down and z away from the camera * @param depth the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters * (as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters) * @param K The calibration matrix * @param points3d the resulting 3d points. They are of depth the same as `depth` if it is CV_32F or CV_64F, and the * depth of `K` if `depth` is of depth CV_U * @param mask the mask of the points to consider (can be empty) */ CV_EXPORTS_W void depthTo3d(InputArray depth, InputArray K, OutputArray points3d, InputArray mask = noArray()); /** If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided * by depth_factor to get a depth in meters, and the values 0 are converted to std::numeric_limits::quiet_NaN() * Otherwise, the image is simply converted to floats * @param in the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters * (as done with the Microsoft Kinect), it is assumed in meters) * @param depth the desired output depth (floats or double) * @param out The rescaled float depth image * @param depth_factor (optional) factor by which depth is converted to distance (by default = 1000.0 for Kinect sensor) */ CV_EXPORTS_W void rescaleDepth(InputArray in, int depth, OutputArray out, double depth_factor = 1000.0); /** Object that can compute planes in an image */ class CV_EXPORTS_W RgbdPlane: public Algorithm { public: enum RGBD_PLANE_METHOD { RGBD_PLANE_METHOD_DEFAULT }; RgbdPlane(int method = RgbdPlane::RGBD_PLANE_METHOD_DEFAULT) : method_(method), block_size_(40), min_size_(block_size_*block_size_), threshold_(0.01), sensor_error_a_(0), sensor_error_b_(0), sensor_error_c_(0) { } /** Constructor * @param block_size The size of the blocks to look at for a stable MSE * @param min_size The minimum size of a cluster to be considered a plane * @param threshold The maximum distance of a point from a plane to belong to it (in meters) * @param sensor_error_a coefficient of the sensor error. 0 by default, 0.0075 for a Kinect * @param sensor_error_b coefficient of the sensor error. 0 by default * @param sensor_error_c coefficient of the sensor error. 0 by default * @param method The method to use to compute the planes. */ RgbdPlane(int method, int block_size, int min_size, double threshold, double sensor_error_a = 0, double sensor_error_b = 0, double sensor_error_c = 0); ~RgbdPlane(); CV_WRAP static Ptr create(int method, int block_size, int min_size, double threshold, double sensor_error_a = 0, double sensor_error_b = 0, double sensor_error_c = 0); /** Find The planes in a depth image * @param points3d the 3d points organized like the depth image: rows x cols with 3 channels * @param normals the normals for every point in the depth image * @param mask An image where each pixel is labeled with the plane it belongs to * and 255 if it does not belong to any plane * @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1 * and c < 0 (so that the normal points towards the camera) */ CV_WRAP_AS(apply) void operator()(InputArray points3d, InputArray normals, OutputArray mask, OutputArray plane_coefficients); /** Find The planes in a depth image but without doing a normal check, which is faster but less accurate * @param points3d the 3d points organized like the depth image: rows x cols with 3 channels * @param mask An image where each pixel is labeled with the plane it belongs to * and 255 if it does not belong to any plane * @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0 */ CV_WRAP_AS(apply) void operator()(InputArray points3d, OutputArray mask, OutputArray plane_coefficients); CV_WRAP int getBlockSize() const { return block_size_; } CV_WRAP void setBlockSize(int val) { block_size_ = val; } CV_WRAP int getMinSize() const { return min_size_; } CV_WRAP void setMinSize(int val) { min_size_ = val; } CV_WRAP int getMethod() const { return method_; } CV_WRAP void setMethod(int val) { method_ = val; } CV_WRAP double getThreshold() const { return threshold_; } CV_WRAP void setThreshold(double val) { threshold_ = val; } CV_WRAP double getSensorErrorA() const { return sensor_error_a_; } CV_WRAP void setSensorErrorA(double val) { sensor_error_a_ = val; } CV_WRAP double getSensorErrorB() const { return sensor_error_b_; } CV_WRAP void setSensorErrorB(double val) { sensor_error_b_ = val; } CV_WRAP double getSensorErrorC() const { return sensor_error_c_; } CV_WRAP void setSensorErrorC(double val) { sensor_error_c_ = val; } private: /** The method to use to compute the planes */ int method_; /** The size of the blocks to look at for a stable MSE */ int block_size_; /** The minimum size of a cluster to be considered a plane */ int min_size_; /** How far a point can be from a plane to belong to it (in meters) */ double threshold_; /** coefficient of the sensor error with respect to the. All 0 by default but you want a=0.0075 for a Kinect */ double sensor_error_a_, sensor_error_b_, sensor_error_c_; }; /** Object that contains a frame data. */ struct CV_EXPORTS_W RgbdFrame { RgbdFrame(); RgbdFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1); virtual ~RgbdFrame(); CV_WRAP static Ptr create(const Mat& image=Mat(), const Mat& depth=Mat(), const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1); CV_WRAP virtual void release(); CV_PROP int ID; CV_PROP Mat image; CV_PROP Mat depth; CV_PROP Mat mask; CV_PROP Mat normals; }; /** Object that contains a frame data that is possibly needed for the Odometry. * It's used for the efficiency (to pass precomputed/cached data of the frame that participates * in the Odometry processing several times). */ struct CV_EXPORTS_W OdometryFrame : public RgbdFrame { /** These constants are used to set a type of cache which has to be prepared depending on the frame role: * srcFrame or dstFrame (see compute method of the Odometry class). For the srcFrame and dstFrame different cache data may be required, * some part of a cache may be common for both frame roles. * @param CACHE_SRC The cache data for the srcFrame will be prepared. * @param CACHE_DST The cache data for the dstFrame will be prepared. * @param CACHE_ALL The cache data for both srcFrame and dstFrame roles will be computed. */ enum { CACHE_SRC = 1, CACHE_DST = 2, CACHE_ALL = CACHE_SRC + CACHE_DST }; OdometryFrame(); OdometryFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1); CV_WRAP static Ptr create(const Mat& image=Mat(), const Mat& depth=Mat(), const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1); CV_WRAP virtual void release() CV_OVERRIDE; CV_WRAP void releasePyramids(); CV_PROP std::vector pyramidImage; CV_PROP std::vector pyramidDepth; CV_PROP std::vector pyramidMask; CV_PROP std::vector pyramidCloud; CV_PROP std::vector pyramid_dI_dx; CV_PROP std::vector pyramid_dI_dy; CV_PROP std::vector pyramidTexturedMask; CV_PROP std::vector pyramidNormals; CV_PROP std::vector pyramidNormalsMask; }; /** Base class for computation of odometry. */ class CV_EXPORTS_W Odometry: public Algorithm { public: /** A class of transformation*/ enum { ROTATION = 1, TRANSLATION = 2, RIGID_BODY_MOTION = 4 }; CV_WRAP static inline float DEFAULT_MIN_DEPTH() { return 0.f; // in meters } CV_WRAP static inline float DEFAULT_MAX_DEPTH() { return 4.f; // in meters } CV_WRAP static inline float DEFAULT_MAX_DEPTH_DIFF() { return 0.07f; // in meters } CV_WRAP static inline float DEFAULT_MAX_POINTS_PART() { return 0.07f; // in [0, 1] } CV_WRAP static inline float DEFAULT_MAX_TRANSLATION() { return 0.15f; // in meters } CV_WRAP static inline float DEFAULT_MAX_ROTATION() { return 15; // in degrees } /** Method to compute a transformation from the source frame to the destination one. * Some odometry algorithms do not used some data of frames (eg. ICP does not use images). * In such case corresponding arguments can be set as empty Mat. * The method returns true if all internal computations were possible (e.g. there were enough correspondences, * system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided * by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation). * @param srcImage Image data of the source frame (CV_8UC1) * @param srcDepth Depth data of the source frame (CV_32FC1, in meters) * @param srcMask Mask that sets which pixels have to be used from the source frame (CV_8UC1) * @param dstImage Image data of the destination frame (CV_8UC1) * @param dstDepth Depth data of the destination frame (CV_32FC1, in meters) * @param dstMask Mask that sets which pixels have to be used from the destination frame (CV_8UC1) * @param Rt Resulting transformation from the source frame to the destination one (rigid body motion): dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is homogeneous point in the source frame, Rt is 4x4 matrix of CV_64FC1 type. * @param initRt Initial transformation from the source frame to the destination one (optional) */ CV_WRAP bool compute(const Mat& srcImage, const Mat& srcDepth, const Mat& srcMask, const Mat& dstImage, const Mat& dstDepth, const Mat& dstMask, OutputArray Rt, const Mat& initRt = Mat()) const; /** One more method to compute a transformation from the source frame to the destination one. * It is designed to save on computing the frame data (image pyramids, normals, etc.). */ CV_WRAP_AS(compute2) bool compute(Ptr& srcFrame, Ptr& dstFrame, OutputArray Rt, const Mat& initRt = Mat()) const; /** Prepare a cache for the frame. The function checks the precomputed/passed data (throws the error if this data * does not satisfy) and computes all remaining cache data needed for the frame. Returned size is a resolution * of the prepared frame. * @param frame The odometry which will process the frame. * @param cacheType The cache type: CACHE_SRC, CACHE_DST or CACHE_ALL. */ CV_WRAP virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; CV_WRAP static Ptr create(const String & odometryType); /** @see setCameraMatrix */ CV_WRAP virtual cv::Mat getCameraMatrix() const = 0; /** @copybrief getCameraMatrix @see getCameraMatrix */ CV_WRAP virtual void setCameraMatrix(const cv::Mat &val) = 0; /** @see setTransformType */ CV_WRAP virtual int getTransformType() const = 0; /** @copybrief getTransformType @see getTransformType */ CV_WRAP virtual void setTransformType(int val) = 0; protected: virtual void checkParams() const = 0; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, OutputArray Rt, const Mat& initRt) const = 0; }; /** Odometry based on the paper "Real-Time Visual Odometry from Dense RGB-D Images", * F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011. */ class CV_EXPORTS_W RgbdOdometry: public Odometry { public: RgbdOdometry(); /** Constructor. * @param cameraMatrix Camera matrix * @param minDepth Pixels with depth less than minDepth will not be used (in meters) * @param maxDepth Pixels with depth larger than maxDepth will not be used (in meters) * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out * if their depth difference is larger than maxDepthDiff (in meters) * @param iterCounts Count of iterations on each pyramid level. * @param minGradientMagnitudes For each pyramid level the pixels will be filtered out * if they have gradient magnitude less than minGradientMagnitudes[level]. * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart * @param transformType Class of transformation */ RgbdOdometry(const Mat& cameraMatrix, float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(), float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), const std::vector& iterCounts = std::vector(), const std::vector& minGradientMagnitudes = std::vector(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(), int transformType = Odometry::RIGID_BODY_MOTION); CV_WRAP static Ptr create(const Mat& cameraMatrix = Mat(), float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(), float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), const std::vector& iterCounts = std::vector(), const std::vector& minGradientMagnitudes = std::vector(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(), int transformType = Odometry::RIGID_BODY_MOTION); CV_WRAP virtual Size prepareFrameCache(Ptr& frame, int cacheType) const CV_OVERRIDE; CV_WRAP cv::Mat getCameraMatrix() const CV_OVERRIDE { return cameraMatrix; } CV_WRAP void setCameraMatrix(const cv::Mat &val) CV_OVERRIDE { cameraMatrix = val; } CV_WRAP double getMinDepth() const { return minDepth; } CV_WRAP void setMinDepth(double val) { minDepth = val; } CV_WRAP double getMaxDepth() const { return maxDepth; } CV_WRAP void setMaxDepth(double val) { maxDepth = val; } CV_WRAP double getMaxDepthDiff() const { return maxDepthDiff; } CV_WRAP void setMaxDepthDiff(double val) { maxDepthDiff = val; } CV_WRAP cv::Mat getIterationCounts() const { return iterCounts; } CV_WRAP void setIterationCounts(const cv::Mat &val) { iterCounts = val; } CV_WRAP cv::Mat getMinGradientMagnitudes() const { return minGradientMagnitudes; } CV_WRAP void setMinGradientMagnitudes(const cv::Mat &val) { minGradientMagnitudes = val; } CV_WRAP double getMaxPointsPart() const { return maxPointsPart; } CV_WRAP void setMaxPointsPart(double val) { maxPointsPart = val; } CV_WRAP int getTransformType() const CV_OVERRIDE { return transformType; } CV_WRAP void setTransformType(int val) CV_OVERRIDE { transformType = val; } CV_WRAP double getMaxTranslation() const { return maxTranslation; } CV_WRAP void setMaxTranslation(double val) { maxTranslation = val; } CV_WRAP double getMaxRotation() const { return maxRotation; } CV_WRAP void setMaxRotation(double val) { maxRotation = val; } protected: virtual void checkParams() const CV_OVERRIDE; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, OutputArray Rt, const Mat& initRt) const CV_OVERRIDE; // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. /*float*/ double minDepth, maxDepth, maxDepthDiff; /*vector*/ Mat iterCounts; /*vector*/ Mat minGradientMagnitudes; double maxPointsPart; Mat cameraMatrix; int transformType; double maxTranslation, maxRotation; }; /** Odometry based on the paper "KinectFusion: Real-Time Dense Surface Mapping and Tracking", * Richard A. Newcombe, Andrew Fitzgibbon, at al, SIGGRAPH, 2011. */ class CV_EXPORTS_W ICPOdometry: public Odometry { public: ICPOdometry(); /** Constructor. * @param cameraMatrix Camera matrix * @param minDepth Pixels with depth less than minDepth will not be used * @param maxDepth Pixels with depth larger than maxDepth will not be used * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out * if their depth difference is larger than maxDepthDiff * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart * @param iterCounts Count of iterations on each pyramid level. * @param transformType Class of trasformation */ ICPOdometry(const Mat& cameraMatrix, float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(), float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(), const std::vector& iterCounts = std::vector(), int transformType = Odometry::RIGID_BODY_MOTION); CV_WRAP static Ptr create(const Mat& cameraMatrix = Mat(), float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(), float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(), const std::vector& iterCounts = std::vector(), int transformType = Odometry::RIGID_BODY_MOTION); CV_WRAP virtual Size prepareFrameCache(Ptr& frame, int cacheType) const CV_OVERRIDE; CV_WRAP cv::Mat getCameraMatrix() const CV_OVERRIDE { return cameraMatrix; } CV_WRAP void setCameraMatrix(const cv::Mat &val) CV_OVERRIDE { cameraMatrix = val; } CV_WRAP double getMinDepth() const { return minDepth; } CV_WRAP void setMinDepth(double val) { minDepth = val; } CV_WRAP double getMaxDepth() const { return maxDepth; } CV_WRAP void setMaxDepth(double val) { maxDepth = val; } CV_WRAP double getMaxDepthDiff() const { return maxDepthDiff; } CV_WRAP void setMaxDepthDiff(double val) { maxDepthDiff = val; } CV_WRAP cv::Mat getIterationCounts() const { return iterCounts; } CV_WRAP void setIterationCounts(const cv::Mat &val) { iterCounts = val; } CV_WRAP double getMaxPointsPart() const { return maxPointsPart; } CV_WRAP void setMaxPointsPart(double val) { maxPointsPart = val; } CV_WRAP int getTransformType() const CV_OVERRIDE { return transformType; } CV_WRAP void setTransformType(int val) CV_OVERRIDE { transformType = val; } CV_WRAP double getMaxTranslation() const { return maxTranslation; } CV_WRAP void setMaxTranslation(double val) { maxTranslation = val; } CV_WRAP double getMaxRotation() const { return maxRotation; } CV_WRAP void setMaxRotation(double val) { maxRotation = val; } CV_WRAP Ptr getNormalsComputer() const { return normalsComputer; } protected: virtual void checkParams() const CV_OVERRIDE; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, OutputArray Rt, const Mat& initRt) const CV_OVERRIDE; // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. /*float*/ double minDepth, maxDepth, maxDepthDiff; /*float*/ double maxPointsPart; /*vector*/ Mat iterCounts; Mat cameraMatrix; int transformType; double maxTranslation, maxRotation; mutable Ptr normalsComputer; }; /** Odometry that merges RgbdOdometry and ICPOdometry by minimize sum of their energy functions. */ class CV_EXPORTS_W RgbdICPOdometry: public Odometry { public: RgbdICPOdometry(); /** Constructor. * @param cameraMatrix Camera matrix * @param minDepth Pixels with depth less than minDepth will not be used * @param maxDepth Pixels with depth larger than maxDepth will not be used * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out * if their depth difference is larger than maxDepthDiff * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart * @param iterCounts Count of iterations on each pyramid level. * @param minGradientMagnitudes For each pyramid level the pixels will be filtered out * if they have gradient magnitude less than minGradientMagnitudes[level]. * @param transformType Class of trasformation */ RgbdICPOdometry(const Mat& cameraMatrix, float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(), float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(), const std::vector& iterCounts = std::vector(), const std::vector& minGradientMagnitudes = std::vector(), int transformType = Odometry::RIGID_BODY_MOTION); CV_WRAP static Ptr create(const Mat& cameraMatrix = Mat(), float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(), float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(), const std::vector& iterCounts = std::vector(), const std::vector& minGradientMagnitudes = std::vector(), int transformType = Odometry::RIGID_BODY_MOTION); CV_WRAP virtual Size prepareFrameCache(Ptr& frame, int cacheType) const CV_OVERRIDE; CV_WRAP cv::Mat getCameraMatrix() const CV_OVERRIDE { return cameraMatrix; } CV_WRAP void setCameraMatrix(const cv::Mat &val) CV_OVERRIDE { cameraMatrix = val; } CV_WRAP double getMinDepth() const { return minDepth; } CV_WRAP void setMinDepth(double val) { minDepth = val; } CV_WRAP double getMaxDepth() const { return maxDepth; } CV_WRAP void setMaxDepth(double val) { maxDepth = val; } CV_WRAP double getMaxDepthDiff() const { return maxDepthDiff; } CV_WRAP void setMaxDepthDiff(double val) { maxDepthDiff = val; } CV_WRAP double getMaxPointsPart() const { return maxPointsPart; } CV_WRAP void setMaxPointsPart(double val) { maxPointsPart = val; } CV_WRAP cv::Mat getIterationCounts() const { return iterCounts; } CV_WRAP void setIterationCounts(const cv::Mat &val) { iterCounts = val; } CV_WRAP cv::Mat getMinGradientMagnitudes() const { return minGradientMagnitudes; } CV_WRAP void setMinGradientMagnitudes(const cv::Mat &val) { minGradientMagnitudes = val; } CV_WRAP int getTransformType() const CV_OVERRIDE { return transformType; } CV_WRAP void setTransformType(int val) CV_OVERRIDE { transformType = val; } CV_WRAP double getMaxTranslation() const { return maxTranslation; } CV_WRAP void setMaxTranslation(double val) { maxTranslation = val; } CV_WRAP double getMaxRotation() const { return maxRotation; } CV_WRAP void setMaxRotation(double val) { maxRotation = val; } CV_WRAP Ptr getNormalsComputer() const { return normalsComputer; } protected: virtual void checkParams() const CV_OVERRIDE; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, OutputArray Rt, const Mat& initRt) const CV_OVERRIDE; // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. /*float*/ double minDepth, maxDepth, maxDepthDiff; /*float*/ double maxPointsPart; /*vector*/ Mat iterCounts; /*vector*/ Mat minGradientMagnitudes; Mat cameraMatrix; int transformType; double maxTranslation, maxRotation; mutable Ptr normalsComputer; }; /** A faster version of ICPOdometry which is used in KinectFusion implementation * Partial list of differences: * - Works in parallel * - Written in universal intrinsics * - Filters points by angle * - Interpolates points and normals * - Doesn't use masks or min/max depth filtering * - Doesn't use random subsets of points * - Supports only Rt transform type * - Supports only 4-float vectors as input type */ class CV_EXPORTS_W FastICPOdometry: public Odometry { public: FastICPOdometry(); /** Constructor. * @param cameraMatrix Camera matrix * @param maxDistDiff Correspondences between pixels of two given frames will be filtered out * if their depth difference is larger than maxDepthDiff * @param angleThreshold Correspondence will be filtered out * if an angle between their normals is bigger than threshold * @param sigmaDepth Depth sigma in meters for bilateral smooth * @param sigmaSpatial Spatial sigma in pixels for bilateral smooth * @param kernelSize Kernel size in pixels for bilateral smooth * @param iterCounts Count of iterations on each pyramid level */ FastICPOdometry(const Mat& cameraMatrix, float maxDistDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float angleThreshold = (float)(30. * CV_PI / 180.), float sigmaDepth = 0.04f, float sigmaSpatial = 4.5f, int kernelSize = 7, const std::vector& iterCounts = std::vector()); CV_WRAP static Ptr create(const Mat& cameraMatrix, float maxDistDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float angleThreshold = (float)(30. * CV_PI / 180.), float sigmaDepth = 0.04f, float sigmaSpatial = 4.5f, int kernelSize = 7, const std::vector& iterCounts = std::vector()); CV_WRAP virtual Size prepareFrameCache(Ptr& frame, int cacheType) const CV_OVERRIDE; CV_WRAP cv::Mat getCameraMatrix() const CV_OVERRIDE { return cameraMatrix; } CV_WRAP void setCameraMatrix(const cv::Mat &val) CV_OVERRIDE { cameraMatrix = val; } CV_WRAP double getMaxDistDiff() const { return maxDistDiff; } CV_WRAP void setMaxDistDiff(float val) { maxDistDiff = val; } CV_WRAP float getAngleThreshold() const { return angleThreshold; } CV_WRAP void setAngleThreshold(float f) { angleThreshold = f; } CV_WRAP float getSigmaDepth() const { return sigmaDepth; } CV_WRAP void setSigmaDepth(float f) { sigmaDepth = f; } CV_WRAP float getSigmaSpatial() const { return sigmaSpatial; } CV_WRAP void setSigmaSpatial(float f) { sigmaSpatial = f; } CV_WRAP int getKernelSize() const { return kernelSize; } CV_WRAP void setKernelSize(int f) { kernelSize = f; } CV_WRAP cv::Mat getIterationCounts() const { return iterCounts; } CV_WRAP void setIterationCounts(const cv::Mat &val) { iterCounts = val; } CV_WRAP int getTransformType() const CV_OVERRIDE { return Odometry::RIGID_BODY_MOTION; } CV_WRAP void setTransformType(int val) CV_OVERRIDE { if(val != Odometry::RIGID_BODY_MOTION) throw std::runtime_error("Rigid Body Motion is the only accepted transformation type" " for this odometry method"); } protected: virtual void checkParams() const CV_OVERRIDE; virtual bool computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, OutputArray Rt, const Mat& initRt) const CV_OVERRIDE; // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. float maxDistDiff; float angleThreshold; float sigmaDepth; float sigmaSpatial; int kernelSize; /*vector*/ Mat iterCounts; Mat cameraMatrix; }; /** Warp the image: compute 3d points from the depth, transform them using given transformation, * then project color point cloud to an image plane. * This function can be used to visualize results of the Odometry algorithm. * @param image The image (of CV_8UC1 or CV_8UC3 type) * @param depth The depth (of type used in depthTo3d fuction) * @param mask The mask of used pixels (of CV_8UC1), it can be empty * @param Rt The transformation that will be applied to the 3d points computed from the depth * @param cameraMatrix Camera matrix * @param distCoeff Distortion coefficients * @param warpedImage The warped image. * @param warpedDepth The warped depth. * @param warpedMask The warped mask. */ CV_EXPORTS_W void warpFrame(const Mat& image, const Mat& depth, const Mat& mask, const Mat& Rt, const Mat& cameraMatrix, const Mat& distCoeff, OutputArray warpedImage, OutputArray warpedDepth = noArray(), OutputArray warpedMask = noArray()); // TODO Depth interpolation // Curvature // Get rescaleDepth return dubles if asked for //! @} } /* namespace rgbd */ } /* namespace cv */ #endif /* End of file. */