/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__ #define __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__ #ifdef __cplusplus /** @file @date Jun 17, 2014 @author Yury Gitman */ #include namespace cv { namespace ximgproc { //! @addtogroup ximgproc_edge //! @{ /*! Helper class for training part of [P. Dollar and C. L. Zitnick. Structured Forests for Fast Edge Detection, 2013]. */ class CV_EXPORTS_W RFFeatureGetter : public Algorithm { public: /*! * This functions extracts feature channels from src. * Than StructureEdgeDetection uses this feature space * to detect edges. * * \param src : source image to extract features * \param features : output n-channel floating point feature matrix. * * \param gnrmRad : __rf.options.gradientNormalizationRadius * \param gsmthRad : __rf.options.gradientSmoothingRadius * \param shrink : __rf.options.shrinkNumber * \param outNum : __rf.options.numberOfOutputChannels * \param gradNum : __rf.options.numberOfGradientOrientations */ CV_WRAP virtual void getFeatures(const Mat &src, Mat &features, const int gnrmRad, const int gsmthRad, const int shrink, const int outNum, const int gradNum) const = 0; }; CV_EXPORTS_W Ptr createRFFeatureGetter(); /** @brief Class implementing edge detection algorithm from @cite Dollar2013 : */ class CV_EXPORTS_W StructuredEdgeDetection : public Algorithm { public: /** @brief The function detects edges in src and draw them to dst. The algorithm underlies this function is much more robust to texture presence, than common approaches, e.g. Sobel @param src source image (RGB, float, in [0;1]) to detect edges @param dst destination image (grayscale, float, in [0;1]) where edges are drawn @sa Sobel, Canny */ CV_WRAP virtual void detectEdges(cv::InputArray src, cv::OutputArray dst) const = 0; /** @brief The function computes orientation from edge image. @param src edge image. @param dst orientation image. */ CV_WRAP virtual void computeOrientation(cv::InputArray src, cv::OutputArray dst) const = 0; /** @brief The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction. @param edge_image edge image from detectEdges function. @param orientation_image orientation image from computeOrientation function. @param dst suppressed image (grayscale, float, in [0;1]) @param r radius for NMS suppression. @param s radius for boundary suppression. @param m multiplier for conservative suppression. @param isParallel enables/disables parallel computing. */ CV_WRAP virtual void edgesNms(cv::InputArray edge_image, cv::InputArray orientation_image, cv::OutputArray dst, int r = 2, int s = 0, float m = 1, bool isParallel = true) const = 0; }; /*! * The only constructor * * \param model : name of the file where the model is stored * \param howToGetFeatures : optional object inheriting from RFFeatureGetter. * You need it only if you would like to train your * own forest, pass NULL otherwise */ CV_EXPORTS_W Ptr createStructuredEdgeDetection(const String &model, Ptr howToGetFeatures = Ptr()); //! @} } } #endif #endif /* __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__ */