96 lines
2.7 KiB
C++
96 lines
2.7 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
/*
|
|
This file was part of GSoC Project: Facemark API for OpenCV
|
|
Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
|
|
Student: Laksono Kurnianggoro
|
|
Mentor: Delia Passalacqua
|
|
*/
|
|
|
|
#ifndef __OPENCV_FACELANDMARK_HPP__
|
|
#define __OPENCV_FACELANDMARK_HPP__
|
|
|
|
/**
|
|
@defgroup face Face Analysis
|
|
- @ref tutorial_table_of_content_facemark
|
|
- The Facemark API
|
|
*/
|
|
|
|
#include "opencv2/core.hpp"
|
|
#include <vector>
|
|
|
|
|
|
namespace cv {
|
|
namespace face {
|
|
|
|
|
|
/** @brief Abstract base class for all facemark models
|
|
|
|
To utilize this API in your program, please take a look at the @ref tutorial_table_of_content_facemark
|
|
### Description
|
|
|
|
Facemark is a base class which provides universal access to any specific facemark algorithm.
|
|
Therefore, the users should declare a desired algorithm before they can use it in their application.
|
|
|
|
Here is an example on how to declare a facemark algorithm:
|
|
@code
|
|
// Using Facemark in your code:
|
|
Ptr<Facemark> facemark = createFacemarkLBF();
|
|
@endcode
|
|
|
|
The typical pipeline for facemark detection is as follows:
|
|
- Load the trained model using Facemark::loadModel.
|
|
- Perform the fitting on an image via Facemark::fit.
|
|
*/
|
|
class CV_EXPORTS_W Facemark : public virtual Algorithm
|
|
{
|
|
public:
|
|
|
|
/** @brief A function to load the trained model before the fitting process.
|
|
@param model A string represent the filename of a trained model.
|
|
|
|
<B>Example of usage</B>
|
|
@code
|
|
facemark->loadModel("../data/lbf.model");
|
|
@endcode
|
|
*/
|
|
CV_WRAP virtual void loadModel( String model ) = 0;
|
|
// virtual void saveModel(String fs)=0;
|
|
|
|
/** @brief Detect facial landmarks from an image.
|
|
@param image Input image.
|
|
@param faces Output of the function which represent region of interest of the detected faces.
|
|
Each face is stored in cv::Rect container.
|
|
@param landmarks The detected landmark points for each faces.
|
|
|
|
<B>Example of usage</B>
|
|
@code
|
|
Mat image = imread("image.jpg");
|
|
std::vector<Rect> faces;
|
|
std::vector<std::vector<Point2f> > landmarks;
|
|
facemark->fit(image, faces, landmarks);
|
|
@endcode
|
|
*/
|
|
CV_WRAP virtual bool fit( InputArray image,
|
|
InputArray faces,
|
|
OutputArrayOfArrays landmarks) = 0;
|
|
}; /* Facemark*/
|
|
|
|
|
|
//! construct an AAM facemark detector
|
|
CV_EXPORTS_W Ptr<Facemark> createFacemarkAAM();
|
|
|
|
//! construct an LBF facemark detector
|
|
CV_EXPORTS_W Ptr<Facemark> createFacemarkLBF();
|
|
|
|
//! construct a Kazemi facemark detector
|
|
CV_EXPORTS_W Ptr<Facemark> createFacemarkKazemi();
|
|
|
|
|
|
} // face
|
|
} // cv
|
|
|
|
#endif //__OPENCV_FACELANDMARK_HPP__
|