fast-yolo4/3rdparty/opencv/inc/opencv2/quality/quality_utils.hpp
2024-09-25 09:43:03 +08:00

109 lines
3.1 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_QUALITY_QUALITY_UTILS_HPP
#define OPENCV_QUALITY_QUALITY_UTILS_HPP
#include "qualitybase.hpp"
namespace cv
{
namespace quality
{
namespace quality_utils
{
// default type of matrix to expand to
static CV_CONSTEXPR const int EXPANDED_MAT_DEFAULT_TYPE = CV_32F;
// convert inputarray to specified mat type. set type == -1 to preserve existing type
template <typename R>
inline R extract_mat(InputArray in, const int type = -1)
{
R result = {};
if ( in.isMat() )
in.getMat().convertTo( result, (type != -1) ? type : in.getMat().type());
else if ( in.isUMat() )
in.getUMat().convertTo( result, (type != -1) ? type : in.getUMat().type());
else
CV_Error(Error::StsNotImplemented, "Unsupported input type");
return result;
}
// extract and expand matrix to target type
template <typename R>
inline R expand_mat( InputArray src, int TYPE_DEFAULT = EXPANDED_MAT_DEFAULT_TYPE)
{
auto result = extract_mat<R>(src, -1);
// by default, expand to 32F unless we already have >= 32 bits, then go to 64
// if/when we can detect OpenCL CV_16F support, opt for that when input depth == 8
// note that this may impact the precision of the algorithms and would need testing
int type = TYPE_DEFAULT;
switch (result.depth())
{
case CV_32F:
case CV_32S:
case CV_64F:
type = CV_64F;
}; // switch
result.convertTo(result, type);
return result;
}
// return mat of observed min/max pair per column
// row 0: min per column
// row 1: max per column
// template <typename T>
inline cv::Mat get_column_range( const cv::Mat& data )
{
CV_Assert(data.channels() == 1);
CV_Assert(data.rows > 0);
cv::Mat result( cv::Size( data.cols, 2 ), data.type() );
auto
row_min = result.row(0)
, row_max = result.row(1)
;
// set initial min/max
data.row(0).copyTo(row_min);
data.row(0).copyTo(row_max);
for (int y = 1; y < data.rows; ++y)
{
auto row = data.row(y);
cv::min(row,row_min, row_min);
cv::max(row, row_max, row_max);
}
return result;
} // get_column_range
// linear scale of each column from min to max
// range is column-wise pair of observed min/max. See get_column_range
template <typename T>
inline void scale( cv::Mat& mat, const cv::Mat& range, const T min, const T max )
{
// value = lower + (upper - lower) * (value - feature_min[index]) / (feature_max[index] - feature_min[index]);
// where [lower] = lower bound, [upper] = upper bound
for (int y = 0; y < mat.rows; ++y)
{
auto row = mat.row(y);
auto row_min = range.row(0);
auto row_max = range.row(1);
for (int x = 0; x < mat.cols; ++x)
row.at<T>(x) = min + (max - min) * (row.at<T>(x) - row_min.at<T>(x) ) / (row_max.at<T>(x) - row_min.at<T>(x));
}
}
} // quality_utils
} // quality
} // cv
#endif