fast-yolo4/3rdparty/opencv/inc/opencv2/tracking/tracking_by_matching.hpp
2024-09-25 09:43:03 +08:00

567 lines
19 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_TRACKING_TRACKING_BY_MATCHING_HPP__
#define __OPENCV_TRACKING_TRACKING_BY_MATCHING_HPP__
#include <deque>
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
#include <memory>
#include <map>
#include <tuple>
#include <set>
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
//! @addtogroup tracking_detail
//! @{
namespace tbm { //Tracking-by-Matching
///
/// \brief The TrackedObject struct defines properties of detected object.
///
struct CV_EXPORTS TrackedObject {
cv::Rect rect; ///< Detected object ROI (zero area if N/A).
double confidence; ///< Detection confidence level (-1 if N/A).
int frame_idx; ///< Frame index where object was detected (-1 if N/A).
int object_id; ///< Unique object identifier (-1 if N/A).
uint64_t timestamp; ///< Timestamp in milliseconds.
///
/// \brief Default constructor.
///
TrackedObject()
: confidence(-1),
frame_idx(-1),
object_id(-1),
timestamp(0) {}
///
/// \brief Constructor with parameters.
/// \param rect Bounding box of detected object.
/// \param confidence Confidence of detection.
/// \param frame_idx Index of frame.
/// \param object_id Object ID.
///
TrackedObject(const cv::Rect &rect, float confidence, int frame_idx,
int object_id)
: rect(rect),
confidence(confidence),
frame_idx(frame_idx),
object_id(object_id),
timestamp(0) {}
};
using TrackedObjects = std::deque<TrackedObject>;
bool operator==(const TrackedObject& first, const TrackedObject& second);
bool operator!=(const TrackedObject& first, const TrackedObject& second);
/// (object id, detected objects) pairs collection.
using ObjectTracks = std::unordered_map<int, TrackedObjects>;
///
/// \brief The IImageDescriptor class declares base class for image
/// descriptor.
///
class CV_EXPORTS IImageDescriptor {
public:
///
/// \brief Descriptor size getter.
/// \return Descriptor size.
///
virtual cv::Size size() const = 0;
///
/// \brief Computes image descriptor.
/// \param[in] mat Color image.
/// \param[out] descr Computed descriptor.
///
virtual void compute(const cv::Mat &mat, CV_OUT cv::Mat& descr) = 0;
///
/// \brief Computes image descriptors in batches.
/// \param[in] mats Images of interest.
/// \param[out] descrs Matrices to store the computed descriptors.
///
virtual void compute(const std::vector<cv::Mat> &mats,
CV_OUT std::vector<cv::Mat>& descrs) = 0;
virtual ~IImageDescriptor() {}
};
///
/// \brief Uses resized image as descriptor.
///
class CV_EXPORTS ResizedImageDescriptor : public IImageDescriptor {
public:
///
/// \brief Constructor.
/// \param[in] descr_size Size of the descriptor (resized image).
/// \param[in] interpolation Interpolation algorithm.
///
explicit ResizedImageDescriptor(const cv::Size &descr_size,
const cv::InterpolationFlags interpolation)
: descr_size_(descr_size), interpolation_(interpolation) {
CV_Assert(descr_size.width > 0);
CV_Assert(descr_size.height > 0);
}
///
/// \brief Returns descriptor size.
/// \return Number of elements in the descriptor.
///
cv::Size size() const override { return descr_size_; }
///
/// \brief Computes image descriptor.
/// \param[in] mat Frame containing the image of interest.
/// \param[out] descr Matrix to store the computed descriptor.
///
void compute(const cv::Mat &mat, CV_OUT cv::Mat& descr) override {
CV_Assert(!mat.empty());
cv::resize(mat, descr, descr_size_, 0, 0, interpolation_);
}
///
/// \brief Computes images descriptors.
/// \param[in] mats Frames containing images of interest.
/// \param[out] descrs Matrices to store the computed descriptors.
//
void compute(const std::vector<cv::Mat> &mats,
CV_OUT std::vector<cv::Mat>& descrs) override {
descrs.resize(mats.size());
for (size_t i = 0; i < mats.size(); i++) {
compute(mats[i], descrs[i]);
}
}
private:
cv::Size descr_size_;
cv::InterpolationFlags interpolation_;
};
///
/// \brief The IDescriptorDistance class declares an interface for distance
/// computation between reidentification descriptors.
///
class CV_EXPORTS IDescriptorDistance {
public:
///
/// \brief Computes distance between two descriptors.
/// \param[in] descr1 First descriptor.
/// \param[in] descr2 Second descriptor.
/// \return Distance between two descriptors.
///
virtual float compute(const cv::Mat &descr1, const cv::Mat &descr2) = 0;
///
/// \brief Computes distances between two descriptors in batches.
/// \param[in] descrs1 Batch of first descriptors.
/// \param[in] descrs2 Batch of second descriptors.
/// \return Distances between descriptors.
///
virtual std::vector<float> compute(const std::vector<cv::Mat> &descrs1,
const std::vector<cv::Mat> &descrs2) = 0;
virtual ~IDescriptorDistance() {}
};
///
/// \brief The CosDistance class allows computing cosine distance between two
/// reidentification descriptors.
///
class CV_EXPORTS CosDistance : public IDescriptorDistance {
public:
///
/// \brief CosDistance constructor.
/// \param[in] descriptor_size Descriptor size.
///
explicit CosDistance(const cv::Size &descriptor_size);
///
/// \brief Computes distance between two descriptors.
/// \param descr1 First descriptor.
/// \param descr2 Second descriptor.
/// \return Distance between two descriptors.
///
float compute(const cv::Mat &descr1, const cv::Mat &descr2) override;
///
/// \brief Computes distances between two descriptors in batches.
/// \param[in] descrs1 Batch of first descriptors.
/// \param[in] descrs2 Batch of second descriptors.
/// \return Distances between descriptors.
///
std::vector<float> compute(
const std::vector<cv::Mat> &descrs1,
const std::vector<cv::Mat> &descrs2) override;
private:
cv::Size descriptor_size_;
};
///
/// \brief Computes distance between images
/// using MatchTemplate function from OpenCV library
/// and its cross-correlation computation method in particular.
///
class CV_EXPORTS MatchTemplateDistance : public IDescriptorDistance {
public:
///
/// \brief Constructs the distance object.
///
/// \param[in] type Method of MatchTemplate function computation.
/// \param[in] scale Scale parameter for the distance.
/// Final distance is computed as:
/// scale * distance + offset.
/// \param[in] offset Offset parameter for the distance.
/// Final distance is computed as:
/// scale * distance + offset.
///
MatchTemplateDistance(int type = cv::TemplateMatchModes::TM_CCORR_NORMED,
float scale = -1, float offset = 1)
: type_(type), scale_(scale), offset_(offset) {}
///
/// \brief Computes distance between image descriptors.
/// \param[in] descr1 First image descriptor.
/// \param[in] descr2 Second image descriptor.
/// \return Distance between image descriptors.
///
float compute(const cv::Mat &descr1, const cv::Mat &descr2) override;
///
/// \brief Computes distances between two descriptors in batches.
/// \param[in] descrs1 Batch of first descriptors.
/// \param[in] descrs2 Batch of second descriptors.
/// \return Distances between descriptors.
///
std::vector<float> compute(const std::vector<cv::Mat> &descrs1,
const std::vector<cv::Mat> &descrs2) override;
virtual ~MatchTemplateDistance() {}
private:
int type_; ///< Method of MatchTemplate function computation.
float scale_; ///< Scale parameter for the distance. Final distance is
/// computed as: scale * distance + offset.
float offset_; ///< Offset parameter for the distance. Final distance is
/// computed as: scale * distance + offset.
};
///
/// \brief The TrackerParams struct stores parameters of TrackerByMatching
///
struct CV_EXPORTS TrackerParams {
size_t min_track_duration; ///< Min track duration in milliseconds.
size_t forget_delay; ///< Forget about track if the last bounding box in
/// track was detected more than specified number of
/// frames ago.
float aff_thr_fast; ///< Affinity threshold which is used to determine if
/// tracklet and detection should be combined (fast
/// descriptor is used).
float aff_thr_strong; ///< Affinity threshold which is used to determine if
/// tracklet and detection should be combined(strong
/// descriptor is used).
float shape_affinity_w; ///< Shape affinity weight.
float motion_affinity_w; ///< Motion affinity weight.
float time_affinity_w; ///< Time affinity weight.
float min_det_conf; ///< Min confidence of detection.
cv::Vec2f bbox_aspect_ratios_range; ///< Bounding box aspect ratios range.
cv::Vec2f bbox_heights_range; ///< Bounding box heights range.
int predict; ///< How many frames are used to predict bounding box in case
/// of lost track.
float strong_affinity_thr; ///< If 'fast' confidence is greater than this
/// threshold then 'strong' Re-ID approach is
/// used.
float reid_thr; ///< Affinity threshold for re-identification.
bool drop_forgotten_tracks; ///< Drop forgotten tracks. If it's enabled it
/// disables an ability to get detection log.
int max_num_objects_in_track; ///< The number of objects in track is
/// restricted by this parameter. If it is negative or zero, the max number of
/// objects in track is not restricted.
///
/// Default constructor.
///
TrackerParams();
};
///
/// \brief The Track class describes tracks.
///
class CV_EXPORTS Track {
public:
///
/// \brief Track constructor.
/// \param objs Detected objects sequence.
/// \param last_image Image of last image in the detected object sequence.
/// \param descriptor_fast Fast descriptor.
/// \param descriptor_strong Strong descriptor (reid embedding).
///
Track(const TrackedObjects &objs, const cv::Mat &last_image,
const cv::Mat &descriptor_fast, const cv::Mat &descriptor_strong)
: objects(objs),
predicted_rect(!objs.empty() ? objs.back().rect : cv::Rect()),
last_image(last_image),
descriptor_fast(descriptor_fast),
descriptor_strong(descriptor_strong),
lost(0),
length(1) {
CV_Assert(!objs.empty());
first_object = objs[0];
}
///
/// \brief empty returns if track does not contain objects.
/// \return true if track does not contain objects.
///
bool empty() const { return objects.empty(); }
///
/// \brief size returns number of detected objects in a track.
/// \return number of detected objects in a track.
///
size_t size() const { return objects.size(); }
///
/// \brief operator [] return const reference to detected object with
/// specified index.
/// \param i Index of object.
/// \return const reference to detected object with specified index.
///
const TrackedObject &operator[](size_t i) const { return objects[i]; }
///
/// \brief operator [] return non-const reference to detected object with
/// specified index.
/// \param i Index of object.
/// \return non-const reference to detected object with specified index.
///
TrackedObject &operator[](size_t i) { return objects[i]; }
///
/// \brief back returns const reference to last object in track.
/// \return const reference to last object in track.
///
const TrackedObject &back() const {
CV_Assert(!empty());
return objects.back();
}
///
/// \brief back returns non-const reference to last object in track.
/// \return non-const reference to last object in track.
///
TrackedObject &back() {
CV_Assert(!empty());
return objects.back();
}
TrackedObjects objects; ///< Detected objects;
cv::Rect predicted_rect; ///< Rectangle that represents predicted position
/// and size of bounding box if track has been lost.
cv::Mat last_image; ///< Image of last detected object in track.
cv::Mat descriptor_fast; ///< Fast descriptor.
cv::Mat descriptor_strong; ///< Strong descriptor (reid embedding).
size_t lost; ///< How many frames ago track has been lost.
TrackedObject first_object; ///< First object in track.
size_t length; ///< Length of a track including number of objects that were
/// removed from track in order to avoid memory usage growth.
};
///
/// \brief Tracker-by-Matching algorithm interface.
///
/// This class is implementation of tracking-by-matching system. It uses two
/// different appearance measures to compute affinity between bounding boxes:
/// some fast descriptor and some strong descriptor. Each time the assignment
/// problem is solved. The assignment problem in our case is how to establish
/// correspondence between existing tracklets and recently detected objects.
/// First step is to compute an affinity matrix between tracklets and
/// detections. The affinity equals to
/// appearance_affinity * motion_affinity * shape_affinity.
/// Where appearance is 1 - distance(tracklet_fast_dscr, detection_fast_dscr).
/// Second step is to solve the assignment problem using Kuhn-Munkres
/// algorithm. If correspondence between some tracklet and detection is
/// established with low confidence (affinity) then the strong descriptor is
/// used to determine if there is correspondence between tracklet and detection.
///
class CV_EXPORTS ITrackerByMatching {
public:
using Descriptor = std::shared_ptr<IImageDescriptor>;
using Distance = std::shared_ptr<IDescriptorDistance>;
///
/// \brief Destructor for the tracker
///
virtual ~ITrackerByMatching() {}
///
/// \brief Process given frame.
/// \param[in] frame Colored image (CV_8UC3).
/// \param[in] detections Detected objects on the frame.
/// \param[in] timestamp Timestamp must be positive and measured in
/// milliseconds
///
virtual void process(const cv::Mat &frame, const TrackedObjects &detections,
uint64_t timestamp) = 0;
///
/// \brief Pipeline parameters getter.
/// \return Parameters of pipeline.
///
virtual const TrackerParams &params() const = 0;
///
/// \brief Pipeline parameters setter.
/// \param[in] params Parameters of pipeline.
///
virtual void setParams(const TrackerParams &params) = 0;
///
/// \brief Fast descriptor getter.
/// \return Fast descriptor used in pipeline.
///
virtual const Descriptor &descriptorFast() const = 0;
///
/// \brief Fast descriptor setter.
/// \param[in] val Fast descriptor used in pipeline.
///
virtual void setDescriptorFast(const Descriptor &val) = 0;
///
/// \brief Strong descriptor getter.
/// \return Strong descriptor used in pipeline.
///
virtual const Descriptor &descriptorStrong() const = 0;
///
/// \brief Strong descriptor setter.
/// \param[in] val Strong descriptor used in pipeline.
///
virtual void setDescriptorStrong(const Descriptor &val) = 0;
///
/// \brief Fast distance getter.
/// \return Fast distance used in pipeline.
///
virtual const Distance &distanceFast() const = 0;
///
/// \brief Fast distance setter.
/// \param[in] val Fast distance used in pipeline.
///
virtual void setDistanceFast(const Distance &val) = 0;
///
/// \brief Strong distance getter.
/// \return Strong distance used in pipeline.
///
virtual const Distance &distanceStrong() const = 0;
///
/// \brief Strong distance setter.
/// \param[in] val Strong distance used in pipeline.
///
virtual void setDistanceStrong(const Distance &val) = 0;
///
/// \brief Returns number of counted people.
/// \return a number of counted people.
///
virtual size_t count() const = 0;
///
/// \brief Get active tracks to draw
/// \return Active tracks.
///
virtual std::unordered_map<size_t, std::vector<cv::Point> > getActiveTracks() const = 0;
///
/// \brief Get tracked detections.
/// \return Tracked detections.
///
virtual TrackedObjects trackedDetections() const = 0;
///
/// \brief Draws active tracks on a given frame.
/// \param[in] frame Colored image (CV_8UC3).
/// \return Colored image with drawn active tracks.
///
virtual cv::Mat drawActiveTracks(const cv::Mat &frame) = 0;
///
/// \brief isTrackForgotten returns true if track is forgotten.
/// \param id Track ID.
/// \return true if track is forgotten.
///
virtual bool isTrackForgotten(size_t id) const = 0;
///
/// \brief tracks Returns all tracks including forgotten (lost too many frames
/// ago).
/// \return Set of tracks {id, track}.
///
virtual const std::unordered_map<size_t, Track> &tracks() const = 0;
///
/// \brief isTrackValid Checks whether track is valid (duration > threshold).
/// \param track_id Index of checked track.
/// \return True if track duration exceeds some predefined value.
///
virtual bool isTrackValid(size_t track_id) const = 0;
///
/// \brief dropForgottenTracks Removes tracks from memory that were lost too
/// many frames ago.
///
virtual void dropForgottenTracks() = 0;
///
/// \brief dropForgottenTrack Check that the track was lost too many frames
/// ago
/// and removes it frm memory.
///
virtual void dropForgottenTrack(size_t track_id) = 0;
};
///
/// \brief The factory to create Tracker-by-Matching algorithm implementation.
///
CV_EXPORTS cv::Ptr<ITrackerByMatching> createTrackerByMatching(const TrackerParams &params = TrackerParams());
} // namespace tbm
//! @}
}}} // namespace
#endif // #ifndef __OPENCV_TRACKING_TRACKING_BY_MATCHING_HPP__