593 lines
19 KiB
C++
593 lines
19 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
//
|
||
// By downloading, copying, installing or using the software you agree to this license.
|
||
// If you do not agree to this license, do not download, install,
|
||
// copy or use the software.
|
||
//
|
||
//
|
||
// License Agreement
|
||
// For Open Source Computer Vision Library
|
||
//
|
||
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||
// Third party copyrights are property of their respective owners.
|
||
//
|
||
// Redistribution and use in source and binary forms, with or without modification,
|
||
// are permitted provided that the following conditions are met:
|
||
//
|
||
// * Redistribution's of source code must retain the above copyright notice,
|
||
// this list of conditions and the following disclaimer.
|
||
//
|
||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
// this list of conditions and the following disclaimer in the documentation
|
||
// and/or other materials provided with the distribution.
|
||
//
|
||
// * The name of the copyright holders may not be used to endorse or promote products
|
||
// derived from this software without specific prior written permission.
|
||
//
|
||
// This software is provided by the copyright holders and contributors "as is" and
|
||
// any express or implied warranties, including, but not limited to, the implied
|
||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
// In no event shall the Itseez Inc or contributors be liable for any direct,
|
||
// indirect, incidental, special, exemplary, or consequential damages
|
||
// (including, but not limited to, procurement of substitute goods or services;
|
||
// loss of use, data, or profits; or business interruption) however caused
|
||
// and on any theory of liability, whether in contract, strict liability,
|
||
// or tort (including negligence or otherwise) arising in any way out of
|
||
// the use of this software, even if advised of the possibility of such damage.
|
||
//
|
||
//M*/
|
||
|
||
#ifndef OPENCV_DATASETS_DATASET_HPP
|
||
#define OPENCV_DATASETS_DATASET_HPP
|
||
|
||
#include <string>
|
||
#include <vector>
|
||
|
||
#include <opencv2/core.hpp>
|
||
|
||
/** @defgroup datasets Framework for working with different datasets
|
||
|
||
The datasets module includes classes for working with different datasets: load data, evaluate
|
||
different algorithms on them, contains benchmarks, etc.
|
||
|
||
It is planned to have:
|
||
|
||
- basic: loading code for all datasets to help start work with them.
|
||
- next stage: quick benchmarks for all datasets to show how to solve them using OpenCV and
|
||
implement evaluation code.
|
||
- finally: implement on OpenCV state-of-the-art algorithms, which solve these tasks.
|
||
|
||
@{
|
||
@defgroup datasets_ar Action Recognition
|
||
|
||
### HMDB: A Large Human Motion Database
|
||
|
||
Implements loading dataset:
|
||
|
||
"HMDB: A Large Human Motion Database": <http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files: `hmdb51_org.rar` & `test_train_splits.rar`.
|
||
-# Unpack them. Unpack all archives from directory: `hmdb51_org/` and remove them.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_ar_hmdb -p=/home/user/path_to_unpacked_folders/
|
||
~~~
|
||
|
||
#### Benchmark
|
||
|
||
For this dataset was implemented benchmark with accuracy: 0.107407 (using precomputed HOG/HOF
|
||
"STIP" features from site, averaging for 3 splits)
|
||
|
||
To run this benchmark execute:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_ar_hmdb_benchmark -p=/home/user/path_to_unpacked_folders/
|
||
~~~
|
||
|
||
@note
|
||
Precomputed features should be unpacked in the same folder: `/home/user/path_to_unpacked_folders/hmdb51_org_stips/`.
|
||
Also unpack all archives from directory: `hmdb51_org_stips/` and remove them.
|
||
|
||
### Sports-1M %Dataset
|
||
|
||
Implements loading dataset:
|
||
|
||
"Sports-1M Dataset": <http://cs.stanford.edu/people/karpathy/deepvideo/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files (`git clone https://code.google.com/p/sports-1m-dataset/`).
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_ar_sports -p=/home/user/path_to_downloaded_folders/
|
||
~~~
|
||
|
||
@defgroup datasets_fr Face Recognition
|
||
|
||
### Adience
|
||
|
||
Implements loading dataset:
|
||
|
||
"Adience": <http://www.openu.ac.il/home/hassner/Adience/data.html>
|
||
|
||
Usage:
|
||
-# From link above download any dataset file: `faces.tar.gz\aligned.tar.gz` and files with splits:
|
||
`fold_0_data.txt-fold_4_data.txt`, `fold_frontal_0_data.txt-fold_frontal_4_data.txt`. (For
|
||
face recognition task another splits should be created)
|
||
-# Unpack dataset file to some folder and place split files into the same folder.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_fr_adience -p=/home/user/path_to_created_folder/
|
||
~~~
|
||
|
||
### Labeled Faces in the Wild
|
||
|
||
Implements loading dataset:
|
||
|
||
"Labeled Faces in the Wild": <http://vis-www.cs.umass.edu/lfw/>
|
||
|
||
Usage:
|
||
-# From link above download any dataset file:
|
||
`lfw.tgz\lfwa.tar.gz\lfw-deepfunneled.tgz\lfw-funneled.tgz` and files with pairs: 10 test
|
||
splits: `pairs.txt` and developer train split: `pairsDevTrain.txt`.
|
||
-# Unpack dataset file and place `pairs.txt` and `pairsDevTrain.txt` in created folder.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_fr_lfw -p=/home/user/path_to_unpacked_folder/lfw2/
|
||
~~~
|
||
|
||
#### Benchmark
|
||
|
||
For this dataset was implemented benchmark with accuracy: 0.623833 +- 0.005223 (train split:
|
||
`pairsDevTrain.txt`, dataset: lfwa)
|
||
|
||
To run this benchmark execute:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_fr_lfw_benchmark -p=/home/user/path_to_unpacked_folder/lfw2/
|
||
~~~
|
||
|
||
@defgroup datasets_gr Gesture Recognition
|
||
|
||
### ChaLearn Looking at People
|
||
|
||
Implements loading dataset:
|
||
|
||
"ChaLearn Looking at People": <http://gesture.chalearn.org/>
|
||
|
||
Usage
|
||
-# Follow instruction from site above, download files for dataset "Track 3: Gesture Recognition":
|
||
`Train1.zip`-`Train5.zip`, `Validation1.zip`-`Validation3.zip` (Register on site: www.codalab.org and
|
||
accept the terms and conditions of competition:
|
||
<https://www.codalab.org/competitions/991#learn_the_details> There are three mirrors for
|
||
downloading dataset files. When I downloaded data only mirror: "Universitat Oberta de Catalunya"
|
||
works).
|
||
-# Unpack train archives `Train1.zip`-`Train5.zip` to folder `Train/`, validation archives
|
||
`Validation1.zip`-`Validation3.zip` to folder `Validation/`
|
||
-# Unpack all archives in `Train/` & `Validation/` in the folders with the same names, for example:
|
||
`Sample0001.zip` to `Sample0001/`
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_gr_chalearn -p=/home/user/path_to_unpacked_folders/
|
||
~~~
|
||
|
||
### Sheffield Kinect Gesture Dataset
|
||
|
||
Implements loading dataset:
|
||
|
||
"Sheffield Kinect Gesture Dataset": <http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm>
|
||
|
||
Usage:
|
||
-# From link above download dataset files: `subject1_dep.7z`-`subject6_dep.7z`, `subject1_rgb.7z`-`subject6_rgb.7z`.
|
||
-# Unpack them.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_gr_skig -p=/home/user/path_to_unpacked_folders/
|
||
~~~
|
||
|
||
@defgroup datasets_hpe Human Pose Estimation
|
||
|
||
### HumanEva Dataset
|
||
|
||
Implements loading dataset:
|
||
|
||
"HumanEva Dataset": <http://humaneva.is.tue.mpg.de>
|
||
|
||
Usage:
|
||
-# From link above download dataset files for `HumanEva-I` (tar) & `HumanEva-II`.
|
||
-# Unpack them to `HumanEva_1` & `HumanEva_2` accordingly.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_hpe_humaneva -p=/home/user/path_to_unpacked_folders/
|
||
~~~
|
||
|
||
### PARSE Dataset
|
||
|
||
Implements loading dataset:
|
||
|
||
"PARSE Dataset": <http://www.ics.uci.edu/~dramanan/papers/parse/>
|
||
|
||
Usage:
|
||
-# From link above download dataset file: `people.zip`.
|
||
-# Unpack it.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_hpe_parse -p=/home/user/path_to_unpacked_folder/people_all/
|
||
~~~
|
||
|
||
@defgroup datasets_ir Image Registration
|
||
|
||
### Affine Covariant Regions Datasets
|
||
|
||
Implements loading dataset:
|
||
|
||
"Affine Covariant Regions Datasets": <http://www.robots.ox.ac.uk/~vgg/data/data-aff.html>
|
||
|
||
Usage:
|
||
-# From link above download dataset files:
|
||
`bark\bikes\boat\graf\leuven\trees\ubc\wall.tar.gz`.
|
||
-# Unpack them.
|
||
-# To load data, for example, for "bark", run:
|
||
```
|
||
./opencv/build/bin/example_datasets_ir_affine -p=/home/user/path_to_unpacked_folder/bark/
|
||
```
|
||
|
||
### Robot Data Set
|
||
|
||
Implements loading dataset:
|
||
|
||
"Robot Data Set, Point Feature Data Set – 2010": <http://roboimagedata.compute.dtu.dk/?page_id=24>
|
||
|
||
Usage:
|
||
-# From link above download dataset files: `SET001_6.tar.gz`-`SET055_60.tar.gz`
|
||
-# Unpack them to one folder.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_ir_robot -p=/home/user/path_to_unpacked_folder/
|
||
~~~
|
||
|
||
@defgroup datasets_is Image Segmentation
|
||
|
||
### The Berkeley Segmentation Dataset and Benchmark
|
||
|
||
Implements loading dataset:
|
||
|
||
"The Berkeley Segmentation Dataset and Benchmark": <https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files: `BSDS300-human.tgz` & `BSDS300-images.tgz`.
|
||
-# Unpack them.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_is_bsds -p=/home/user/path_to_unpacked_folder/BSDS300/
|
||
~~~
|
||
|
||
### Weizmann Segmentation Evaluation Database
|
||
|
||
Implements loading dataset:
|
||
|
||
"Weizmann Segmentation Evaluation Database": <http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files: `Weizmann_Seg_DB_1obj.ZIP` & `Weizmann_Seg_DB_2obj.ZIP`.
|
||
-# Unpack them.
|
||
-# To load data, for example, for `1 object` dataset, run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_is_weizmann -p=/home/user/path_to_unpacked_folder/1obj/
|
||
~~~
|
||
|
||
@defgroup datasets_msm Multiview Stereo Matching
|
||
|
||
### EPFL Multi-View Stereo
|
||
|
||
Implements loading dataset:
|
||
|
||
"EPFL Multi-View Stereo": <http://cvlab.epfl.ch/data/strechamvs>
|
||
|
||
Usage:
|
||
-# From link above download dataset files:
|
||
`castle_dense\castle_dense_large\castle_entry\fountain\herzjesu_dense\herzjesu_dense_large_bounding\cameras\images\p.tar.gz`.
|
||
-# Unpack them in separate folder for each object. For example, for "fountain", in folder `fountain/` :
|
||
`fountain_dense_bounding.tar.gz -> bounding/`,
|
||
`fountain_dense_cameras.tar.gz -> camera/`,
|
||
`fountain_dense_images.tar.gz -> png/`,
|
||
`fountain_dense_p.tar.gz -> P/`
|
||
-# To load data, for example, for "fountain", run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_msm_epfl -p=/home/user/path_to_unpacked_folder/fountain/
|
||
~~~
|
||
|
||
### Stereo – Middlebury Computer Vision
|
||
|
||
Implements loading dataset:
|
||
|
||
"Stereo – Middlebury Computer Vision": <http://vision.middlebury.edu/mview/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files:
|
||
`dino\dinoRing\dinoSparseRing\temple\templeRing\templeSparseRing.zip`
|
||
-# Unpack them.
|
||
-# To load data, for example "temple" dataset, run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_msm_middlebury -p=/home/user/path_to_unpacked_folder/temple/
|
||
~~~
|
||
|
||
@defgroup datasets_or Object Recognition
|
||
|
||
### ImageNet
|
||
|
||
Implements loading dataset: "ImageNet": <http://www.image-net.org/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files:
|
||
`ILSVRC2010_images_train.tar\ILSVRC2010_images_test.tar\ILSVRC2010_images_val.tar` & devkit:
|
||
`ILSVRC2010_devkit-1.0.tar.gz` (Implemented loading of 2010 dataset as only this dataset has ground
|
||
truth for test data, but structure for ILSVRC2014 is similar)
|
||
-# Unpack them to: `some_folder/train/`, `some_folder/test/`, `some_folder/val` &
|
||
`some_folder/ILSVRC2010_validation_ground_truth.txt`,
|
||
`some_folder/ILSVRC2010_test_ground_truth.txt`.
|
||
-# Create file with labels: `some_folder/labels.txt`, for example, using python script below (each
|
||
file's row format: `synset,labelID,description`. For example: "n07751451,18,plum").
|
||
-# Unpack all tar files in train.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_or_imagenet -p=/home/user/some_folder/
|
||
~~~
|
||
|
||
Python script to parse `meta.mat`:
|
||
~~~{py}
|
||
import scipy.io
|
||
meta_mat = scipy.io.loadmat("devkit-1.0/data/meta.mat")
|
||
|
||
labels_dic = dict((m[0][1][0], m[0][0][0][0]-1) for m in meta_mat['synsets']
|
||
label_names_dic = dict((m[0][1][0], m[0][2][0]) for m in meta_mat['synsets']
|
||
|
||
for label in labels_dic.keys():
|
||
print "{0},{1},{2}".format(label, labels_dic[label], label_names_dic[label])
|
||
~~~
|
||
|
||
### MNIST
|
||
|
||
Implements loading dataset:
|
||
|
||
"MNIST": <http://yann.lecun.com/exdb/mnist/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files:
|
||
`t10k-images-idx3-ubyte.gz`, `t10k-labels-idx1-ubyte.gz`, `train-images-idx3-ubyte.gz`, `train-labels-idx1-ubyte.gz`.
|
||
-# Unpack them.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_or_mnist -p=/home/user/path_to_unpacked_files/
|
||
~~~
|
||
|
||
### SUN Database
|
||
|
||
Implements loading dataset:
|
||
|
||
"SUN Database, Scene Recognition Benchmark. SUN397": <http://vision.cs.princeton.edu/projects/2010/SUN/>
|
||
|
||
Usage:
|
||
-# From link above download dataset file: `SUN397.tar` & file with splits: `Partitions.zip`
|
||
-# Unpack `SUN397.tar` into folder: `SUN397/` & `Partitions.zip` into folder: `SUN397/Partitions/`
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_or_sun -p=/home/user/path_to_unpacked_files/SUN397/
|
||
~~~
|
||
|
||
@defgroup datasets_pd Pedestrian Detection
|
||
|
||
### Caltech Pedestrian Detection Benchmark
|
||
|
||
Implements loading dataset:
|
||
|
||
"Caltech Pedestrian Detection Benchmark": <http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/>
|
||
|
||
@note First version of Caltech Pedestrian dataset loading. Code to unpack all frames from seq files
|
||
commented as their number is huge! So currently load only meta information without data. Also
|
||
ground truth isn't processed, as need to convert it from mat files first.
|
||
|
||
Usage:
|
||
-# From link above download dataset files: `set00.tar`-`set10.tar`.
|
||
-# Unpack them to separate folder.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_pd_caltech -p=/home/user/path_to_unpacked_folders/
|
||
~~~
|
||
|
||
@defgroup datasets_slam SLAM
|
||
|
||
### KITTI Vision Benchmark
|
||
|
||
Implements loading dataset:
|
||
|
||
"KITTI Vision Benchmark": <http://www.cvlibs.net/datasets/kitti/eval_odometry.php>
|
||
|
||
Usage:
|
||
-# From link above download "Odometry" dataset files:
|
||
`data_odometry_gray\data_odometry_color\data_odometry_velodyne\data_odometry_poses\data_odometry_calib.zip`.
|
||
-# Unpack `data_odometry_poses.zip`, it creates folder `dataset/poses/`. After that unpack
|
||
`data_odometry_gray.zip`, `data_odometry_color.zip`, `data_odometry_velodyne.zip`. Folder
|
||
`dataset/sequences/` will be created with folders `00/..21/`. Each of these folders will contain:
|
||
`image_0/`, `image_1/`, `image_2/`, `image_3/`, `velodyne/` and files `calib.txt` & `times.txt`.
|
||
These two last files will be replaced after unpacking `data_odometry_calib.zip` at the end.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_slam_kitti -p=/home/user/path_to_unpacked_folder/dataset/
|
||
~~~
|
||
|
||
### TUMindoor Dataset
|
||
|
||
Implements loading dataset:
|
||
|
||
"TUMindoor Dataset": <http://www.navvis.lmt.ei.tum.de/dataset/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files: `dslr\info\ladybug\pointcloud.tar.bz2` for each dataset:
|
||
`11-11-28 (1st floor)\11-12-13 (1st floor N1)\11-12-17a (4th floor)\11-12-17b (3rd floor)\11-12-17c (Ground I)\11-12-18a (Ground II)\11-12-18b (2nd floor)`
|
||
-# Unpack them in separate folder for each dataset.
|
||
`dslr.tar.bz2 -> dslr/`,
|
||
`info.tar.bz2 -> info/`,
|
||
`ladybug.tar.bz2 -> ladybug/`,
|
||
`pointcloud.tar.bz2 -> pointcloud/`.
|
||
-# To load each dataset run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_slam_tumindoor -p=/home/user/path_to_unpacked_folders/
|
||
~~~
|
||
|
||
@defgroup datasets_sr Super Resolution
|
||
|
||
### The Berkeley Segmentation Dataset and Benchmark
|
||
|
||
Implements loading dataset:
|
||
|
||
"The Berkeley Segmentation Dataset and Benchmark": <https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/>
|
||
|
||
Usage:
|
||
-# From link above download `BSDS300-images.tgz`.
|
||
-# Unpack.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_sr_bsds -p=/home/user/path_to_unpacked_folder/
|
||
~~~
|
||
|
||
### DIV2K dataset: DIVerse 2K
|
||
|
||
Implements loading dataset:
|
||
|
||
"DIV2K dataset: DIVerse 2K": <https://data.vision.ee.ethz.ch/cvl/DIV2K/>
|
||
|
||
Usage:
|
||
-# From link above download 'Train data (HR images)' or any other of the dataset files.
|
||
-# Unpack.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_sr_div2k -p=/home/user/path_to_unpacked_folder/folder_containing_the_images/
|
||
~~~
|
||
|
||
### The General-100 Dataset
|
||
|
||
Implements loading dataset:
|
||
|
||
"General-100 dataset contains 100 bmp-format images (with no compression).
|
||
We used this dataset in our FSRCNN ECCV 2016 paper. The size of these 100 images ranges from 710 x 704 (large) to 131 x 112 (small).
|
||
They are all of good quality with clear edges but fewer smooth regions (e.g., sky and ocean), thus are very suitable for the super-resolution training.":
|
||
<http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html>
|
||
|
||
Usage:
|
||
-# From link above download `General-100.zip`.
|
||
-# Unpack.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_sr_general100 -p=/home/user/path_to_unpacked_folder/
|
||
~~~
|
||
|
||
@defgroup datasets_tr Text Recognition
|
||
|
||
### The Chars74K Dataset
|
||
|
||
Implements loading dataset:
|
||
|
||
"The Chars74K Dataset": <http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/>
|
||
|
||
Usage:
|
||
-# From link above download dataset files:
|
||
`EnglishFnt\EnglishHnd\EnglishImg\KannadaHnd\KannadaImg.tgz`, `ListsTXT.tgz`.
|
||
-# Unpack them.
|
||
-# Move `.m` files from folder `ListsTXT/` to appropriate folder. For example,
|
||
`English/list_English_Img.m` for `EnglishImg.tgz`.
|
||
-# To load data, for example "EnglishImg", run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_tr_chars -p=/home/user/path_to_unpacked_folder/English/
|
||
~~~
|
||
|
||
### The Street View Text Dataset
|
||
|
||
Implements loading dataset:
|
||
|
||
"The Street View Text Dataset": <http://vision.ucsd.edu/~kai/svt/>
|
||
|
||
Usage:
|
||
-# From link above download dataset file: `svt.zip`.
|
||
-# Unpack it.
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_tr_svt -p=/home/user/path_to_unpacked_folder/svt/svt1/
|
||
~~~
|
||
|
||
#### Benchmark
|
||
|
||
For this dataset was implemented benchmark with accuracy (mean f1): 0.217
|
||
|
||
To run benchmark execute:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_tr_svt_benchmark -p=/home/user/path_to_unpacked_folders/svt/svt1/
|
||
~~~
|
||
|
||
@defgroup datasets_track Tracking
|
||
|
||
### VOT 2015 Database
|
||
|
||
Implements loading dataset:
|
||
|
||
"VOT 2015 dataset comprises 60 short sequences showing various objects in challenging backgrounds.
|
||
The sequences were chosen from a large pool of sequences including the ALOV dataset, OTB2 dataset,
|
||
non-tracking datasets, Computer Vision Online, Professor Bob Fisher's Image Database, Videezy,
|
||
Center for Research in Computer Vision, University of Central Florida, USA, NYU Center for Genomics
|
||
and Systems Biology, Data Wrangling, Open Access Directory and Learning and Recognition in Vision
|
||
Group, INRIA, France. The VOT sequence selection protocol was applied to obtain a representative
|
||
set of challenging sequences.": <http://box.vicos.si/vot/vot2015.zip>
|
||
|
||
Usage:
|
||
-# From link above download dataset file: `vot2015.zip`
|
||
-# Unpack `vot2015.zip` into folder: `VOT2015/`
|
||
-# To load data run:
|
||
~~~
|
||
./opencv/build/bin/example_datasets_track_vot -p=/home/user/path_to_unpacked_files/VOT2015/
|
||
~~~
|
||
@}
|
||
|
||
*/
|
||
|
||
namespace cv
|
||
{
|
||
namespace datasets
|
||
{
|
||
|
||
//! @addtogroup datasets
|
||
//! @{
|
||
|
||
struct Object
|
||
{
|
||
};
|
||
|
||
class CV_EXPORTS Dataset
|
||
{
|
||
public:
|
||
Dataset() {}
|
||
virtual ~Dataset() {}
|
||
|
||
virtual void load(const std::string &path) = 0;
|
||
|
||
std::vector< Ptr<Object> >& getTrain(int splitNum = 0);
|
||
std::vector< Ptr<Object> >& getTest(int splitNum = 0);
|
||
std::vector< Ptr<Object> >& getValidation(int splitNum = 0);
|
||
|
||
int getNumSplits() const;
|
||
|
||
protected:
|
||
std::vector< std::vector< Ptr<Object> > > train;
|
||
std::vector< std::vector< Ptr<Object> > > test;
|
||
std::vector< std::vector< Ptr<Object> > > validation;
|
||
|
||
private:
|
||
std::vector< Ptr<Object> > empty;
|
||
};
|
||
|
||
//! @}
|
||
|
||
}
|
||
}
|
||
|
||
#endif
|