139 lines
6.1 KiB
C++
139 lines
6.1 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2020 Intel Corporation
|
|
|
|
|
|
#ifndef OPENCV_GAPI_PARSERS_HPP
|
|
#define OPENCV_GAPI_PARSERS_HPP
|
|
|
|
#include <utility> // std::tuple
|
|
|
|
#include <opencv2/gapi/gmat.hpp>
|
|
#include <opencv2/gapi/gkernel.hpp>
|
|
|
|
namespace cv { namespace gapi {
|
|
namespace nn {
|
|
namespace parsers {
|
|
using GRects = GArray<Rect>;
|
|
using GDetections = std::tuple<GArray<Rect>, GArray<int>>;
|
|
|
|
G_TYPED_KERNEL(GParseSSDBL, <GDetections(GMat, GOpaque<Size>, float, int)>,
|
|
"org.opencv.nn.parsers.parseSSD_BL") {
|
|
static std::tuple<GArrayDesc,GArrayDesc> outMeta(const GMatDesc&, const GOpaqueDesc&, float, int) {
|
|
return std::make_tuple(empty_array_desc(), empty_array_desc());
|
|
}
|
|
};
|
|
|
|
G_TYPED_KERNEL(GParseSSD, <GRects(GMat, GOpaque<Size>, float, bool, bool)>,
|
|
"org.opencv.nn.parsers.parseSSD") {
|
|
static GArrayDesc outMeta(const GMatDesc&, const GOpaqueDesc&, float, bool, bool) {
|
|
return empty_array_desc();
|
|
}
|
|
};
|
|
|
|
G_TYPED_KERNEL(GParseYolo, <GDetections(GMat, GOpaque<Size>, float, float, std::vector<float>)>,
|
|
"org.opencv.nn.parsers.parseYolo") {
|
|
static std::tuple<GArrayDesc, GArrayDesc> outMeta(const GMatDesc&, const GOpaqueDesc&,
|
|
float, float, const std::vector<float>&) {
|
|
return std::make_tuple(empty_array_desc(), empty_array_desc());
|
|
}
|
|
static const std::vector<float>& defaultAnchors() {
|
|
static std::vector<float> anchors {
|
|
0.57273f, 0.677385f, 1.87446f, 2.06253f, 3.33843f, 5.47434f, 7.88282f, 3.52778f, 9.77052f, 9.16828f
|
|
};
|
|
return anchors;
|
|
}
|
|
};
|
|
} // namespace parsers
|
|
} // namespace nn
|
|
|
|
/** @brief Parses output of SSD network.
|
|
|
|
Extracts detection information (box, confidence, label) from SSD output and
|
|
filters it by given confidence and label.
|
|
|
|
@note Function textual ID is "org.opencv.nn.parsers.parseSSD_BL"
|
|
|
|
@param in Input CV_32F tensor with {1,1,N,7} dimensions.
|
|
@param inSz Size to project detected boxes to (size of the input image).
|
|
@param confidenceThreshold If confidence of the
|
|
detection is smaller than confidence threshold, detection is rejected.
|
|
@param filterLabel If provided (!= -1), only detections with
|
|
given label will get to the output.
|
|
@return a tuple with a vector of detected boxes and a vector of appropriate labels.
|
|
*/
|
|
GAPI_EXPORTS_W std::tuple<GArray<Rect>, GArray<int>> parseSSD(const GMat& in,
|
|
const GOpaque<Size>& inSz,
|
|
const float confidenceThreshold = 0.5f,
|
|
const int filterLabel = -1);
|
|
|
|
/** @brief Parses output of SSD network.
|
|
|
|
Extracts detection information (box, confidence) from SSD output and
|
|
filters it by given confidence and by going out of bounds.
|
|
|
|
@note Function textual ID is "org.opencv.nn.parsers.parseSSD"
|
|
|
|
@param in Input CV_32F tensor with {1,1,N,7} dimensions.
|
|
@param inSz Size to project detected boxes to (size of the input image).
|
|
@param confidenceThreshold If confidence of the
|
|
detection is smaller than confidence threshold, detection is rejected.
|
|
@param alignmentToSquare If provided true, bounding boxes are extended to squares.
|
|
The center of the rectangle remains unchanged, the side of the square is
|
|
the larger side of the rectangle.
|
|
@param filterOutOfBounds If provided true, out-of-frame boxes are filtered.
|
|
@return a vector of detected bounding boxes.
|
|
*/
|
|
GAPI_EXPORTS_W GArray<Rect> parseSSD(const GMat& in,
|
|
const GOpaque<Size>& inSz,
|
|
const float confidenceThreshold,
|
|
const bool alignmentToSquare,
|
|
const bool filterOutOfBounds);
|
|
|
|
/** @brief Parses output of Yolo network.
|
|
|
|
Extracts detection information (box, confidence, label) from Yolo output,
|
|
filters it by given confidence and performs non-maximum supression for overlapping boxes.
|
|
|
|
@note Function textual ID is "org.opencv.nn.parsers.parseYolo"
|
|
|
|
@param in Input CV_32F tensor with {1,13,13,N} dimensions, N should satisfy:
|
|
\f[\texttt{N} = (\texttt{num_classes} + \texttt{5}) * \texttt{5},\f]
|
|
where num_classes - a number of classes Yolo network was trained with.
|
|
@param inSz Size to project detected boxes to (size of the input image).
|
|
@param confidenceThreshold If confidence of the
|
|
detection is smaller than confidence threshold, detection is rejected.
|
|
@param nmsThreshold Non-maximum supression threshold which controls minimum
|
|
relative box intersection area required for rejecting the box with a smaller confidence.
|
|
If 1.f, nms is not performed and no boxes are rejected.
|
|
@param anchors Anchors Yolo network was trained with.
|
|
@note The default anchor values are specified for YOLO v2 Tiny as described in Intel Open Model Zoo
|
|
<a href="https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/public/yolo-v2-tiny-tf/yolo-v2-tiny-tf.md">documentation</a>.
|
|
@return a tuple with a vector of detected boxes and a vector of appropriate labels.
|
|
*/
|
|
GAPI_EXPORTS_W std::tuple<GArray<Rect>, GArray<int>> parseYolo(const GMat& in,
|
|
const GOpaque<Size>& inSz,
|
|
const float confidenceThreshold = 0.5f,
|
|
const float nmsThreshold = 0.5f,
|
|
const std::vector<float>& anchors
|
|
= nn::parsers::GParseYolo::defaultAnchors());
|
|
|
|
} // namespace gapi
|
|
} // namespace cv
|
|
|
|
// Reimport parseSSD & parseYolo under their initial namespace
|
|
namespace cv {
|
|
namespace gapi {
|
|
namespace streaming {
|
|
|
|
using cv::gapi::parseSSD;
|
|
using cv::gapi::parseYolo;
|
|
|
|
} // namespace streaming
|
|
} // namespace gapi
|
|
} // namespace cv
|
|
|
|
#endif // OPENCV_GAPI_PARSERS_HPP
|