fast-yolo4/3rdparty/opencv/inc/opencv2/gapi/video.hpp
2024-09-25 09:43:03 +08:00

365 lines
16 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_VIDEO_HPP
#define OPENCV_GAPI_VIDEO_HPP
#include <utility> // std::tuple
#include <opencv2/gapi/gkernel.hpp>
/** \defgroup gapi_video G-API Video processing functionality
*/
namespace cv { namespace gapi {
/** @brief Structure for the Kalman filter's initialization parameters.*/
struct GAPI_EXPORTS KalmanParams
{
// initial state
//! corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
Mat state;
//! posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
Mat errorCov;
// dynamic system description
//! state transition matrix (A)
Mat transitionMatrix;
//! measurement matrix (H)
Mat measurementMatrix;
//! process noise covariance matrix (Q)
Mat processNoiseCov;
//! measurement noise covariance matrix (R)
Mat measurementNoiseCov;
//! control matrix (B) (Optional: not used if there's no control)
Mat controlMatrix;
};
/**
* @brief This namespace contains G-API Operations and functions for
* video-oriented algorithms, like optical flow and background subtraction.
*/
namespace video
{
using GBuildPyrOutput = std::tuple<GArray<GMat>, GScalar>;
using GOptFlowLKOutput = std::tuple<cv::GArray<cv::Point2f>,
cv::GArray<uchar>,
cv::GArray<float>>;
G_TYPED_KERNEL(GBuildOptFlowPyramid, <GBuildPyrOutput(GMat,Size,GScalar,bool,int,int,bool)>,
"org.opencv.video.buildOpticalFlowPyramid")
{
static std::tuple<GArrayDesc,GScalarDesc>
outMeta(GMatDesc,const Size&,GScalarDesc,bool,int,int,bool)
{
return std::make_tuple(empty_array_desc(), empty_scalar_desc());
}
};
G_TYPED_KERNEL(GCalcOptFlowLK,
<GOptFlowLKOutput(GMat,GMat,cv::GArray<cv::Point2f>,cv::GArray<cv::Point2f>,Size,
GScalar,TermCriteria,int,double)>,
"org.opencv.video.calcOpticalFlowPyrLK")
{
static std::tuple<GArrayDesc,GArrayDesc,GArrayDesc> outMeta(GMatDesc,GMatDesc,GArrayDesc,
GArrayDesc,const Size&,GScalarDesc,
const TermCriteria&,int,double)
{
return std::make_tuple(empty_array_desc(), empty_array_desc(), empty_array_desc());
}
};
G_TYPED_KERNEL(GCalcOptFlowLKForPyr,
<GOptFlowLKOutput(cv::GArray<cv::GMat>,cv::GArray<cv::GMat>,
cv::GArray<cv::Point2f>,cv::GArray<cv::Point2f>,Size,GScalar,
TermCriteria,int,double)>,
"org.opencv.video.calcOpticalFlowPyrLKForPyr")
{
static std::tuple<GArrayDesc,GArrayDesc,GArrayDesc> outMeta(GArrayDesc,GArrayDesc,
GArrayDesc,GArrayDesc,
const Size&,GScalarDesc,
const TermCriteria&,int,double)
{
return std::make_tuple(empty_array_desc(), empty_array_desc(), empty_array_desc());
}
};
enum BackgroundSubtractorType
{
TYPE_BS_MOG2,
TYPE_BS_KNN
};
/** @brief Structure for the Background Subtractor operation's initialization parameters.*/
struct BackgroundSubtractorParams
{
//! Type of the Background Subtractor operation.
BackgroundSubtractorType operation = TYPE_BS_MOG2;
//! Length of the history.
int history = 500;
//! For MOG2: Threshold on the squared Mahalanobis distance between the pixel
//! and the model to decide whether a pixel is well described by
//! the background model.
//! For KNN: Threshold on the squared distance between the pixel and the sample
//! to decide whether a pixel is close to that sample.
double threshold = 16;
//! If true, the algorithm will detect shadows and mark them.
bool detectShadows = true;
//! The value between 0 and 1 that indicates how fast
//! the background model is learnt.
//! Negative parameter value makes the algorithm use some automatically
//! chosen learning rate.
double learningRate = -1;
//! default constructor
BackgroundSubtractorParams() {}
/** Full constructor
@param op MOG2/KNN Background Subtractor type.
@param histLength Length of the history.
@param thrshld For MOG2: Threshold on the squared Mahalanobis distance between
the pixel and the model to decide whether a pixel is well described by the background model.
For KNN: Threshold on the squared distance between the pixel and the sample to decide
whether a pixel is close to that sample.
@param detect If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.
@param lRate The value between 0 and 1 that indicates how fast the background model is learnt.
Negative parameter value makes the algorithm to use some automatically chosen learning rate.
*/
BackgroundSubtractorParams(BackgroundSubtractorType op, int histLength,
double thrshld, bool detect, double lRate) : operation(op),
history(histLength),
threshold(thrshld),
detectShadows(detect),
learningRate(lRate){}
};
G_TYPED_KERNEL(GBackgroundSubtractor, <GMat(GMat, BackgroundSubtractorParams)>,
"org.opencv.video.BackgroundSubtractor")
{
static GMatDesc outMeta(const GMatDesc& in, const BackgroundSubtractorParams& bsParams)
{
GAPI_Assert(bsParams.history >= 0);
GAPI_Assert(bsParams.learningRate <= 1);
return in.withType(CV_8U, 1);
}
};
void checkParams(const cv::gapi::KalmanParams& kfParams,
const cv::GMatDesc& measurement, const cv::GMatDesc& control = {});
G_TYPED_KERNEL(GKalmanFilter, <GMat(GMat, GOpaque<bool>, GMat, KalmanParams)>,
"org.opencv.video.KalmanFilter")
{
static GMatDesc outMeta(const GMatDesc& measurement, const GOpaqueDesc&,
const GMatDesc& control, const KalmanParams& kfParams)
{
checkParams(kfParams, measurement, control);
return measurement.withSize(Size(1, kfParams.transitionMatrix.rows));
}
};
G_TYPED_KERNEL(GKalmanFilterNoControl, <GMat(GMat, GOpaque<bool>, KalmanParams)>, "org.opencv.video.KalmanFilterNoControl")
{
static GMatDesc outMeta(const GMatDesc& measurement, const GOpaqueDesc&, const KalmanParams& kfParams)
{
checkParams(kfParams, measurement);
return measurement.withSize(Size(1, kfParams.transitionMatrix.rows));
}
};
} //namespace video
//! @addtogroup gapi_video
//! @{
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
@note Function textual ID is "org.opencv.video.buildOpticalFlowPyramid"
@param img 8-bit input image.
@param winSize window size of optical flow algorithm. Must be not less than winSize
argument of calcOpticalFlowPyrLK. It is needed to calculate required
padding for pyramid levels.
@param maxLevel 0-based maximal pyramid level number.
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
constructed without the gradients then calcOpticalFlowPyrLK will calculate
them internally.
@param pyrBorder the border mode for pyramid layers.
@param derivBorder the border mode for gradients.
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
to force data copying.
@return
- output pyramid.
- number of levels in constructed pyramid. Can be less than maxLevel.
*/
GAPI_EXPORTS std::tuple<GArray<GMat>, GScalar>
buildOpticalFlowPyramid(const GMat &img,
const Size &winSize,
const GScalar &maxLevel,
bool withDerivatives = true,
int pyrBorder = BORDER_REFLECT_101,
int derivBorder = BORDER_CONSTANT,
bool tryReuseInputImage = true);
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade
method with pyramids.
See @cite Bouguet00 .
@note Function textual ID is "org.opencv.video.calcOpticalFlowPyrLK"
@param prevImg first 8-bit input image (GMat) or pyramid (GArray<GMat>) constructed by
buildOpticalFlowPyramid.
@param nextImg second input image (GMat) or pyramid (GArray<GMat>) of the same size and the same
type as prevImg.
@param prevPts GArray of 2D points for which the flow needs to be found; point coordinates must be
single-precision floating-point numbers.
@param predPts GArray of 2D points initial for the flow search; make sense only when
OPTFLOW_USE_INITIAL_FLOW flag is passed; in that case the vector must have the same size as in
the input.
@param winSize size of the search window at each pyramid level.
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
algorithm will use as many levels as pyramids have but no more than maxLevel.
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
(after the specified maximum number of iterations criteria.maxCount or when the search window
moves by less than criteria.epsilon).
@param flags operation flags:
- **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
not set, then prevPts is copied to nextPts and is considered the initial estimate.
- **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
minEigThreshold description); if the flag is not set, then L1 distance between patches
around the original and a moved point, divided by number of pixels in a window, is used as a
error measure.
@param minEigThresh the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
performance boost.
@return
- GArray of 2D points (with single-precision floating-point coordinates)
containing the calculated new positions of input features in the second image.
- status GArray (of unsigned chars); each element of the vector is set to 1 if
the flow for the corresponding features has been found, otherwise, it is set to 0.
- GArray of errors (doubles); each element of the vector is set to an error for the
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
found then the error is not defined (use the status parameter to find such cases).
*/
GAPI_EXPORTS std::tuple<GArray<Point2f>, GArray<uchar>, GArray<float>>
calcOpticalFlowPyrLK(const GMat &prevImg,
const GMat &nextImg,
const GArray<Point2f> &prevPts,
const GArray<Point2f> &predPts,
const Size &winSize = Size(21, 21),
const GScalar &maxLevel = 3,
const TermCriteria &criteria = TermCriteria(TermCriteria::COUNT |
TermCriteria::EPS,
30, 0.01),
int flags = 0,
double minEigThresh = 1e-4);
/**
@overload
@note Function textual ID is "org.opencv.video.calcOpticalFlowPyrLKForPyr"
*/
GAPI_EXPORTS std::tuple<GArray<Point2f>, GArray<uchar>, GArray<float>>
calcOpticalFlowPyrLK(const GArray<GMat> &prevPyr,
const GArray<GMat> &nextPyr,
const GArray<Point2f> &prevPts,
const GArray<Point2f> &predPts,
const Size &winSize = Size(21, 21),
const GScalar &maxLevel = 3,
const TermCriteria &criteria = TermCriteria(TermCriteria::COUNT |
TermCriteria::EPS,
30, 0.01),
int flags = 0,
double minEigThresh = 1e-4);
/** @brief Gaussian Mixture-based or K-nearest neighbours-based Background/Foreground Segmentation Algorithm.
The operation generates a foreground mask.
@return Output image is foreground mask, i.e. 8-bit unsigned 1-channel (binary) matrix @ref CV_8UC1.
@note Functional textual ID is "org.opencv.video.BackgroundSubtractor"
@param src input image: Floating point frame is used without scaling and should be in range [0,255].
@param bsParams Set of initialization parameters for Background Subtractor kernel.
*/
GAPI_EXPORTS GMat BackgroundSubtractor(const GMat& src, const cv::gapi::video::BackgroundSubtractorParams& bsParams);
/** @brief Standard Kalman filter algorithm <http://en.wikipedia.org/wiki/Kalman_filter>.
@note Functional textual ID is "org.opencv.video.KalmanFilter"
@param measurement input matrix: 32-bit or 64-bit float 1-channel matrix containing measurements.
@param haveMeasurement dynamic input flag that indicates whether we get measurements
at a particular iteration .
@param control input matrix: 32-bit or 64-bit float 1-channel matrix contains control data
for changing dynamic system.
@param kfParams Set of initialization parameters for Kalman filter kernel.
@return Output matrix is predicted or corrected state. They can be 32-bit or 64-bit float
1-channel matrix @ref CV_32FC1 or @ref CV_64FC1.
@details If measurement matrix is given (haveMeasurements == true), corrected state will
be returned which corresponds to the pipeline
cv::KalmanFilter::predict(control) -> cv::KalmanFilter::correct(measurement).
Otherwise, predicted state will be returned which corresponds to the call of
cv::KalmanFilter::predict(control).
@sa cv::KalmanFilter
*/
GAPI_EXPORTS GMat KalmanFilter(const GMat& measurement, const GOpaque<bool>& haveMeasurement,
const GMat& control, const cv::gapi::KalmanParams& kfParams);
/** @overload
The case of Standard Kalman filter algorithm when there is no control in a dynamic system.
In this case the controlMatrix is empty and control vector is absent.
@note Function textual ID is "org.opencv.video.KalmanFilterNoControl"
@param measurement input matrix: 32-bit or 64-bit float 1-channel matrix containing measurements.
@param haveMeasurement dynamic input flag that indicates whether we get measurements
at a particular iteration.
@param kfParams Set of initialization parameters for Kalman filter kernel.
@return Output matrix is predicted or corrected state. They can be 32-bit or 64-bit float
1-channel matrix @ref CV_32FC1 or @ref CV_64FC1.
@sa cv::KalmanFilter
*/
GAPI_EXPORTS GMat KalmanFilter(const GMat& measurement, const GOpaque<bool>& haveMeasurement,
const cv::gapi::KalmanParams& kfParams);
//! @} gapi_video
} //namespace gapi
} //namespace cv
namespace cv { namespace detail {
template<> struct CompileArgTag<cv::gapi::video::BackgroundSubtractorParams>
{
static const char* tag()
{
return "org.opencv.video.background_substractor_params";
}
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_VIDEO_HPP