373 lines
13 KiB
C++
373 lines
13 KiB
C++
/*
|
|
By downloading, copying, installing or using the software you agree to this
|
|
license. If you do not agree to this license, do not download, install,
|
|
copy or use the software.
|
|
|
|
|
|
License Agreement
|
|
For Open Source Computer Vision Library
|
|
(3-clause BSD License)
|
|
|
|
Copyright (C) 2016, OpenCV Foundation, all rights reserved.
|
|
Third party copyrights are property of their respective owners.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
* Neither the names of the copyright holders nor the names of the contributors
|
|
may be used to endorse or promote products derived from this software
|
|
without specific prior written permission.
|
|
|
|
This software is provided by the copyright holders and contributors "as is" and
|
|
any express or implied warranties, including, but not limited to, the implied
|
|
warranties of merchantability and fitness for a particular purpose are
|
|
disclaimed. In no event shall copyright holders or contributors be liable for
|
|
any direct, indirect, incidental, special, exemplary, or consequential damages
|
|
(including, but not limited to, procurement of substitute goods or services;
|
|
loss of use, data, or profits; or business interruption) however caused
|
|
and on any theory of liability, whether in contract, strict liability,
|
|
or tort (including negligence or otherwise) arising in any way out of
|
|
the use of this software, even if advised of the possibility of such damage.
|
|
*/
|
|
|
|
/**
|
|
* @file sparse_matching_gpc.hpp
|
|
* @author Vladislav Samsonov <vvladxx@gmail.com>
|
|
* @brief Implementation of the Global Patch Collider.
|
|
*
|
|
* Implementation of the Global Patch Collider algorithm from the following paper:
|
|
* http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf
|
|
*
|
|
* @cite Wang_2016_CVPR
|
|
*/
|
|
|
|
#ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
|
|
#define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
|
|
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
namespace optflow
|
|
{
|
|
|
|
//! @addtogroup optflow
|
|
//! @{
|
|
|
|
struct CV_EXPORTS_W GPCPatchDescriptor
|
|
{
|
|
static const unsigned nFeatures = 18; //!< number of features in a patch descriptor
|
|
Vec< double, nFeatures > feature;
|
|
|
|
double dot( const Vec< double, nFeatures > &coef ) const;
|
|
|
|
void markAsSeparated() { feature[0] = std::numeric_limits< double >::quiet_NaN(); }
|
|
|
|
bool isSeparated() const { return cvIsNaN( feature[0] ) != 0; }
|
|
};
|
|
|
|
struct CV_EXPORTS_W GPCPatchSample
|
|
{
|
|
GPCPatchDescriptor ref;
|
|
GPCPatchDescriptor pos;
|
|
GPCPatchDescriptor neg;
|
|
|
|
void getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const;
|
|
};
|
|
|
|
typedef std::vector< GPCPatchSample > GPCSamplesVector;
|
|
|
|
/** @brief Descriptor types for the Global Patch Collider.
|
|
*/
|
|
enum GPCDescType
|
|
{
|
|
GPC_DESCRIPTOR_DCT = 0, //!< Better quality but slow
|
|
GPC_DESCRIPTOR_WHT //!< Worse quality but much faster
|
|
};
|
|
|
|
/** @brief Class encapsulating training samples.
|
|
*/
|
|
class CV_EXPORTS_W GPCTrainingSamples
|
|
{
|
|
private:
|
|
GPCSamplesVector samples;
|
|
int descriptorType;
|
|
|
|
public:
|
|
/** @brief This function can be used to extract samples from a pair of images and a ground truth flow.
|
|
* Sizes of all the provided vectors must be equal.
|
|
*/
|
|
static Ptr< GPCTrainingSamples > create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo,
|
|
const std::vector< String > >, int descriptorType );
|
|
|
|
static Ptr< GPCTrainingSamples > create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
|
|
int descriptorType );
|
|
|
|
size_t size() const { return samples.size(); }
|
|
|
|
int type() const { return descriptorType; }
|
|
|
|
operator GPCSamplesVector &() { return samples; }
|
|
};
|
|
|
|
/** @brief Class encapsulating training parameters.
|
|
*/
|
|
struct GPCTrainingParams
|
|
{
|
|
unsigned maxTreeDepth; //!< Maximum tree depth to stop partitioning.
|
|
int minNumberOfSamples; //!< Minimum number of samples in the node to stop partitioning.
|
|
int descriptorType; //!< Type of descriptors to use.
|
|
bool printProgress; //!< Print progress to stdout.
|
|
|
|
GPCTrainingParams( unsigned _maxTreeDepth = 20, int _minNumberOfSamples = 3, GPCDescType _descriptorType = GPC_DESCRIPTOR_DCT,
|
|
bool _printProgress = true )
|
|
: maxTreeDepth( _maxTreeDepth ), minNumberOfSamples( _minNumberOfSamples ), descriptorType( _descriptorType ),
|
|
printProgress( _printProgress )
|
|
{
|
|
CV_Assert( check() );
|
|
}
|
|
|
|
bool check() const { return maxTreeDepth > 1 && minNumberOfSamples > 1; }
|
|
};
|
|
|
|
/** @brief Class encapsulating matching parameters.
|
|
*/
|
|
struct GPCMatchingParams
|
|
{
|
|
bool useOpenCL; //!< Whether to use OpenCL to speed up the matching.
|
|
|
|
GPCMatchingParams( bool _useOpenCL = false ) : useOpenCL( _useOpenCL ) {}
|
|
|
|
GPCMatchingParams( const GPCMatchingParams ¶ms ) : useOpenCL( params.useOpenCL ) {}
|
|
};
|
|
|
|
/** @brief Class for individual tree.
|
|
*/
|
|
class CV_EXPORTS_W GPCTree : public Algorithm
|
|
{
|
|
public:
|
|
struct Node
|
|
{
|
|
Vec< double, GPCPatchDescriptor::nFeatures > coef; //!< Hyperplane coefficients
|
|
double rhs; //!< Bias term of the hyperplane
|
|
unsigned left;
|
|
unsigned right;
|
|
|
|
bool operator==( const Node &n ) const { return coef == n.coef && rhs == n.rhs && left == n.left && right == n.right; }
|
|
};
|
|
|
|
private:
|
|
typedef GPCSamplesVector::iterator SIter;
|
|
|
|
std::vector< Node > nodes;
|
|
GPCTrainingParams params;
|
|
|
|
bool trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth );
|
|
|
|
public:
|
|
void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() );
|
|
|
|
void write( FileStorage &fs ) const CV_OVERRIDE;
|
|
|
|
void read( const FileNode &fn ) CV_OVERRIDE;
|
|
|
|
unsigned findLeafForPatch( const GPCPatchDescriptor &descr ) const;
|
|
|
|
static Ptr< GPCTree > create() { return makePtr< GPCTree >(); }
|
|
|
|
bool operator==( const GPCTree &t ) const { return nodes == t.nodes; }
|
|
|
|
int getDescriptorType() const { return params.descriptorType; }
|
|
};
|
|
|
|
template < int T > class GPCForest : public Algorithm
|
|
{
|
|
private:
|
|
struct Trail
|
|
{
|
|
unsigned leaf[T]; //!< Inside which leaf of the tree 0..T the patch fell?
|
|
Point2i coord; //!< Patch coordinates.
|
|
|
|
bool operator==( const Trail &trail ) const { return memcmp( leaf, trail.leaf, sizeof( leaf ) ) == 0; }
|
|
|
|
bool operator<( const Trail &trail ) const
|
|
{
|
|
for ( int i = 0; i < T - 1; ++i )
|
|
if ( leaf[i] != trail.leaf[i] )
|
|
return leaf[i] < trail.leaf[i];
|
|
return leaf[T - 1] < trail.leaf[T - 1];
|
|
}
|
|
};
|
|
|
|
class ParallelTrailsFilling : public ParallelLoopBody
|
|
{
|
|
private:
|
|
const GPCForest *forest;
|
|
const std::vector< GPCPatchDescriptor > *descr;
|
|
std::vector< Trail > *trails;
|
|
|
|
ParallelTrailsFilling &operator=( const ParallelTrailsFilling & );
|
|
|
|
public:
|
|
ParallelTrailsFilling( const GPCForest *_forest, const std::vector< GPCPatchDescriptor > *_descr, std::vector< Trail > *_trails )
|
|
: forest( _forest ), descr( _descr ), trails( _trails ){};
|
|
|
|
void operator()( const Range &range ) const CV_OVERRIDE
|
|
{
|
|
for ( int t = range.start; t < range.end; ++t )
|
|
for ( size_t i = 0; i < descr->size(); ++i )
|
|
trails->at( i ).leaf[t] = forest->tree[t].findLeafForPatch( descr->at( i ) );
|
|
}
|
|
};
|
|
|
|
GPCTree tree[T];
|
|
|
|
public:
|
|
/** @brief Train the forest using one sample set for every tree.
|
|
* Please, consider using the next method instead of this one for better quality.
|
|
*/
|
|
void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() )
|
|
{
|
|
for ( int i = 0; i < T; ++i )
|
|
tree[i].train( samples, params );
|
|
}
|
|
|
|
/** @brief Train the forest using individual samples for each tree.
|
|
* It is generally better to use this instead of the first method.
|
|
*/
|
|
void train( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, const std::vector< String > >,
|
|
const GPCTrainingParams params = GPCTrainingParams() )
|
|
{
|
|
for ( int i = 0; i < T; ++i )
|
|
{
|
|
Ptr< GPCTrainingSamples > samples =
|
|
GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
|
|
tree[i].train( *samples, params );
|
|
}
|
|
}
|
|
|
|
void train( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
|
|
const GPCTrainingParams params = GPCTrainingParams() )
|
|
{
|
|
for ( int i = 0; i < T; ++i )
|
|
{
|
|
Ptr< GPCTrainingSamples > samples =
|
|
GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
|
|
tree[i].train( *samples, params );
|
|
}
|
|
}
|
|
|
|
void write( FileStorage &fs ) const CV_OVERRIDE
|
|
{
|
|
fs << "ntrees" << T << "trees"
|
|
<< "[";
|
|
for ( int i = 0; i < T; ++i )
|
|
{
|
|
fs << "{";
|
|
tree[i].write( fs );
|
|
fs << "}";
|
|
}
|
|
fs << "]";
|
|
}
|
|
|
|
void read( const FileNode &fn ) CV_OVERRIDE
|
|
{
|
|
CV_Assert( T <= (int)fn["ntrees"] );
|
|
FileNodeIterator it = fn["trees"].begin();
|
|
for ( int i = 0; i < T; ++i, ++it )
|
|
tree[i].read( *it );
|
|
}
|
|
|
|
/** @brief Find correspondences between two images.
|
|
* @param[in] imgFrom First image in a sequence.
|
|
* @param[in] imgTo Second image in a sequence.
|
|
* @param[out] corr Output vector with pairs of corresponding points.
|
|
* @param[in] params Additional matching parameters for fine-tuning.
|
|
*/
|
|
void findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
|
|
const GPCMatchingParams params = GPCMatchingParams() ) const;
|
|
|
|
static Ptr< GPCForest > create() { return makePtr< GPCForest >(); }
|
|
};
|
|
|
|
class CV_EXPORTS_W GPCDetails
|
|
{
|
|
public:
|
|
static void dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr );
|
|
|
|
static void getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp,
|
|
int type );
|
|
|
|
static void getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y );
|
|
};
|
|
|
|
template < int T >
|
|
void GPCForest< T >::findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
|
|
const GPCMatchingParams params ) const
|
|
{
|
|
CV_Assert( imgFrom.channels() == 3 );
|
|
CV_Assert( imgTo.channels() == 3 );
|
|
|
|
Mat from, to;
|
|
imgFrom.getMat().convertTo( from, CV_32FC3 );
|
|
imgTo.getMat().convertTo( to, CV_32FC3 );
|
|
cvtColor( from, from, COLOR_BGR2YCrCb );
|
|
cvtColor( to, to, COLOR_BGR2YCrCb );
|
|
|
|
Mat fromCh[3], toCh[3];
|
|
split( from, fromCh );
|
|
split( to, toCh );
|
|
|
|
std::vector< GPCPatchDescriptor > descr;
|
|
GPCDetails::getAllDescriptorsForImage( fromCh, descr, params, tree[0].getDescriptorType() );
|
|
std::vector< Trail > trailsFrom( descr.size() ), trailsTo( descr.size() );
|
|
|
|
for ( size_t i = 0; i < descr.size(); ++i )
|
|
GPCDetails::getCoordinatesFromIndex( i, from.size(), trailsFrom[i].coord.x, trailsFrom[i].coord.y );
|
|
parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsFrom ) );
|
|
|
|
descr.clear();
|
|
GPCDetails::getAllDescriptorsForImage( toCh, descr, params, tree[0].getDescriptorType() );
|
|
|
|
for ( size_t i = 0; i < descr.size(); ++i )
|
|
GPCDetails::getCoordinatesFromIndex( i, to.size(), trailsTo[i].coord.x, trailsTo[i].coord.y );
|
|
parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsTo ) );
|
|
|
|
std::sort( trailsFrom.begin(), trailsFrom.end() );
|
|
std::sort( trailsTo.begin(), trailsTo.end() );
|
|
|
|
for ( size_t i = 0; i < trailsFrom.size(); ++i )
|
|
{
|
|
bool uniq = true;
|
|
while ( i + 1 < trailsFrom.size() && trailsFrom[i] == trailsFrom[i + 1] )
|
|
++i, uniq = false;
|
|
if ( uniq )
|
|
{
|
|
typename std::vector< Trail >::const_iterator lb = std::lower_bound( trailsTo.begin(), trailsTo.end(), trailsFrom[i] );
|
|
if ( lb != trailsTo.end() && *lb == trailsFrom[i] && ( ( lb + 1 ) == trailsTo.end() || !( *lb == *( lb + 1 ) ) ) )
|
|
corr.push_back( std::make_pair( trailsFrom[i].coord, lb->coord ) );
|
|
}
|
|
}
|
|
|
|
GPCDetails::dropOutliers( corr );
|
|
}
|
|
|
|
//! @}
|
|
|
|
} // namespace optflow
|
|
|
|
CV_EXPORTS void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node );
|
|
|
|
CV_EXPORTS void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node );
|
|
} // namespace cv
|
|
|
|
#endif
|