436 lines
14 KiB
C++
436 lines
14 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
// This code is also subject to the license terms in the LICENSE_WillowGarage.md file found in this module's directory
|
|
|
|
#ifndef __OPENCV_RGBD_LINEMOD_HPP__
|
|
#define __OPENCV_RGBD_LINEMOD_HPP__
|
|
|
|
#include "opencv2/core.hpp"
|
|
#include <map>
|
|
|
|
/****************************************************************************************\
|
|
* LINE-MOD *
|
|
\****************************************************************************************/
|
|
|
|
namespace cv {
|
|
namespace linemod {
|
|
|
|
//! @addtogroup rgbd
|
|
//! @{
|
|
|
|
/**
|
|
* \brief Discriminant feature described by its location and label.
|
|
*/
|
|
struct CV_EXPORTS_W_SIMPLE Feature
|
|
{
|
|
CV_PROP_RW int x; ///< x offset
|
|
CV_PROP_RW int y; ///< y offset
|
|
CV_PROP_RW int label; ///< Quantization
|
|
|
|
CV_WRAP Feature() : x(0), y(0), label(0) {}
|
|
CV_WRAP Feature(int x, int y, int label);
|
|
|
|
void read(const FileNode& fn);
|
|
void write(FileStorage& fs) const;
|
|
};
|
|
|
|
inline Feature::Feature(int _x, int _y, int _label) : x(_x), y(_y), label(_label) {}
|
|
|
|
struct CV_EXPORTS_W_SIMPLE Template
|
|
{
|
|
CV_PROP int width;
|
|
CV_PROP int height;
|
|
CV_PROP int pyramid_level;
|
|
CV_PROP std::vector<Feature> features;
|
|
|
|
void read(const FileNode& fn);
|
|
void write(FileStorage& fs) const;
|
|
};
|
|
|
|
/**
|
|
* \brief Represents a modality operating over an image pyramid.
|
|
*/
|
|
class CV_EXPORTS_W QuantizedPyramid
|
|
{
|
|
public:
|
|
// Virtual destructor
|
|
virtual ~QuantizedPyramid() {}
|
|
|
|
/**
|
|
* \brief Compute quantized image at current pyramid level for online detection.
|
|
*
|
|
* \param[out] dst The destination 8-bit image. For each pixel at most one bit is set,
|
|
* representing its classification.
|
|
*/
|
|
CV_WRAP virtual void quantize(CV_OUT Mat& dst) const =0;
|
|
|
|
/**
|
|
* \brief Extract most discriminant features at current pyramid level to form a new template.
|
|
*
|
|
* \param[out] templ The new template.
|
|
*/
|
|
CV_WRAP virtual bool extractTemplate(CV_OUT Template& templ) const =0;
|
|
|
|
/**
|
|
* \brief Go to the next pyramid level.
|
|
*
|
|
* \todo Allow pyramid scale factor other than 2
|
|
*/
|
|
CV_WRAP virtual void pyrDown() =0;
|
|
|
|
protected:
|
|
/// Candidate feature with a score
|
|
struct Candidate
|
|
{
|
|
Candidate(int x, int y, int label, float score);
|
|
|
|
/// Sort candidates with high score to the front
|
|
bool operator<(const Candidate& rhs) const
|
|
{
|
|
return score > rhs.score;
|
|
}
|
|
|
|
Feature f;
|
|
float score;
|
|
};
|
|
|
|
/**
|
|
* \brief Choose candidate features so that they are not bunched together.
|
|
*
|
|
* \param[in] candidates Candidate features sorted by score.
|
|
* \param[out] features Destination vector of selected features.
|
|
* \param[in] num_features Number of candidates to select.
|
|
* \param[in] distance Hint for desired distance between features.
|
|
*/
|
|
static void selectScatteredFeatures(const std::vector<Candidate>& candidates,
|
|
std::vector<Feature>& features,
|
|
size_t num_features, float distance);
|
|
};
|
|
|
|
inline QuantizedPyramid::Candidate::Candidate(int x, int y, int label, float _score) : f(x, y, label), score(_score) {}
|
|
|
|
/**
|
|
* \brief Interface for modalities that plug into the LINE template matching representation.
|
|
*
|
|
* \todo Max response, to allow optimization of summing (255/MAX) features as uint8
|
|
*/
|
|
class CV_EXPORTS_W Modality
|
|
{
|
|
public:
|
|
// Virtual destructor
|
|
virtual ~Modality() {}
|
|
|
|
/**
|
|
* \brief Form a quantized image pyramid from a source image.
|
|
*
|
|
* \param[in] src The source image. Type depends on the modality.
|
|
* \param[in] mask Optional mask. If not empty, unmasked pixels are set to zero
|
|
* in quantized image and cannot be extracted as features.
|
|
*/
|
|
CV_WRAP Ptr<QuantizedPyramid> process(const Mat& src,
|
|
const Mat& mask = Mat()) const
|
|
{
|
|
return processImpl(src, mask);
|
|
}
|
|
|
|
CV_WRAP virtual String name() const =0;
|
|
|
|
CV_WRAP virtual void read(const FileNode& fn) =0;
|
|
virtual void write(FileStorage& fs) const =0;
|
|
|
|
/**
|
|
* \brief Create modality by name.
|
|
*
|
|
* The following modality types are supported:
|
|
* - "ColorGradient"
|
|
* - "DepthNormal"
|
|
*/
|
|
CV_WRAP static Ptr<Modality> create(const String& modality_type);
|
|
|
|
/**
|
|
* \brief Load a modality from file.
|
|
*/
|
|
CV_WRAP static Ptr<Modality> create(const FileNode& fn);
|
|
|
|
protected:
|
|
// Indirection is because process() has a default parameter.
|
|
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
|
|
const Mat& mask) const =0;
|
|
};
|
|
|
|
/**
|
|
* \brief Modality that computes quantized gradient orientations from a color image.
|
|
*/
|
|
class CV_EXPORTS_W ColorGradient : public Modality
|
|
{
|
|
public:
|
|
/**
|
|
* \brief Default constructor. Uses reasonable default parameter values.
|
|
*/
|
|
ColorGradient();
|
|
|
|
/**
|
|
* \brief Constructor.
|
|
*
|
|
* \param weak_threshold When quantizing, discard gradients with magnitude less than this.
|
|
* \param num_features How many features a template must contain.
|
|
* \param strong_threshold Consider as candidate features only gradients whose norms are
|
|
* larger than this.
|
|
*/
|
|
ColorGradient(float weak_threshold, size_t num_features, float strong_threshold);
|
|
|
|
CV_WRAP static Ptr<ColorGradient> create(float weak_threshold, size_t num_features, float strong_threshold);
|
|
|
|
virtual String name() const CV_OVERRIDE;
|
|
|
|
virtual void read(const FileNode& fn) CV_OVERRIDE;
|
|
virtual void write(FileStorage& fs) const CV_OVERRIDE;
|
|
|
|
CV_PROP float weak_threshold;
|
|
CV_PROP size_t num_features;
|
|
CV_PROP float strong_threshold;
|
|
|
|
protected:
|
|
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
|
|
const Mat& mask) const CV_OVERRIDE;
|
|
};
|
|
|
|
/**
|
|
* \brief Modality that computes quantized surface normals from a dense depth map.
|
|
*/
|
|
class CV_EXPORTS_W DepthNormal : public Modality
|
|
{
|
|
public:
|
|
/**
|
|
* \brief Default constructor. Uses reasonable default parameter values.
|
|
*/
|
|
DepthNormal();
|
|
|
|
/**
|
|
* \brief Constructor.
|
|
*
|
|
* \param distance_threshold Ignore pixels beyond this distance.
|
|
* \param difference_threshold When computing normals, ignore contributions of pixels whose
|
|
* depth difference with the central pixel is above this threshold.
|
|
* \param num_features How many features a template must contain.
|
|
* \param extract_threshold Consider as candidate feature only if there are no differing
|
|
* orientations within a distance of extract_threshold.
|
|
*/
|
|
DepthNormal(int distance_threshold, int difference_threshold, size_t num_features,
|
|
int extract_threshold);
|
|
|
|
CV_WRAP static Ptr<DepthNormal> create(int distance_threshold, int difference_threshold,
|
|
size_t num_features, int extract_threshold);
|
|
|
|
virtual String name() const CV_OVERRIDE;
|
|
|
|
virtual void read(const FileNode& fn) CV_OVERRIDE;
|
|
virtual void write(FileStorage& fs) const CV_OVERRIDE;
|
|
|
|
CV_PROP int distance_threshold;
|
|
CV_PROP int difference_threshold;
|
|
CV_PROP size_t num_features;
|
|
CV_PROP int extract_threshold;
|
|
|
|
protected:
|
|
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
|
|
const Mat& mask) const CV_OVERRIDE;
|
|
};
|
|
|
|
/**
|
|
* \brief Debug function to colormap a quantized image for viewing.
|
|
*/
|
|
CV_EXPORTS_W void colormap(const Mat& quantized, CV_OUT Mat& dst);
|
|
|
|
/**
|
|
* \brief Debug function to draw linemod features
|
|
* @param img
|
|
* @param templates see @ref Detector::addTemplate
|
|
* @param tl template bbox top-left offset see @ref Detector::addTemplate
|
|
* @param size marker size see @ref cv::drawMarker
|
|
*/
|
|
CV_EXPORTS_W void drawFeatures(InputOutputArray img, const std::vector<Template>& templates, const Point2i& tl, int size = 10);
|
|
|
|
/**
|
|
* \brief Represents a successful template match.
|
|
*/
|
|
struct CV_EXPORTS_W_SIMPLE Match
|
|
{
|
|
CV_WRAP Match()
|
|
{
|
|
}
|
|
|
|
CV_WRAP Match(int x, int y, float similarity, const String& class_id, int template_id);
|
|
|
|
/// Sort matches with high similarity to the front
|
|
bool operator<(const Match& rhs) const
|
|
{
|
|
// Secondarily sort on template_id for the sake of duplicate removal
|
|
if (similarity != rhs.similarity)
|
|
return similarity > rhs.similarity;
|
|
else
|
|
return template_id < rhs.template_id;
|
|
}
|
|
|
|
bool operator==(const Match& rhs) const
|
|
{
|
|
return x == rhs.x && y == rhs.y && similarity == rhs.similarity && class_id == rhs.class_id;
|
|
}
|
|
|
|
CV_PROP_RW int x;
|
|
CV_PROP_RW int y;
|
|
CV_PROP_RW float similarity;
|
|
CV_PROP_RW String class_id;
|
|
CV_PROP_RW int template_id;
|
|
};
|
|
|
|
inline
|
|
Match::Match(int _x, int _y, float _similarity, const String& _class_id, int _template_id)
|
|
: x(_x), y(_y), similarity(_similarity), class_id(_class_id), template_id(_template_id)
|
|
{}
|
|
|
|
/**
|
|
* \brief Object detector using the LINE template matching algorithm with any set of
|
|
* modalities.
|
|
*/
|
|
class CV_EXPORTS_W Detector
|
|
{
|
|
public:
|
|
/**
|
|
* \brief Empty constructor, initialize with read().
|
|
*/
|
|
CV_WRAP Detector();
|
|
|
|
/**
|
|
* \brief Constructor.
|
|
*
|
|
* \param modalities Modalities to use (color gradients, depth normals, ...).
|
|
* \param T_pyramid Value of the sampling step T at each pyramid level. The
|
|
* number of pyramid levels is T_pyramid.size().
|
|
*/
|
|
CV_WRAP Detector(const std::vector< Ptr<Modality> >& modalities, const std::vector<int>& T_pyramid);
|
|
|
|
/**
|
|
* \brief Detect objects by template matching.
|
|
*
|
|
* Matches globally at the lowest pyramid level, then refines locally stepping up the pyramid.
|
|
*
|
|
* \param sources Source images, one for each modality.
|
|
* \param threshold Similarity threshold, a percentage between 0 and 100.
|
|
* \param[out] matches Template matches, sorted by similarity score.
|
|
* \param class_ids If non-empty, only search for the desired object classes.
|
|
* \param[out] quantized_images Optionally return vector<Mat> of quantized images.
|
|
* \param masks The masks for consideration during matching. The masks should be CV_8UC1
|
|
* where 255 represents a valid pixel. If non-empty, the vector must be
|
|
* the same size as sources. Each element must be
|
|
* empty or the same size as its corresponding source.
|
|
*/
|
|
CV_WRAP void match(const std::vector<Mat>& sources, float threshold, CV_OUT std::vector<Match>& matches,
|
|
const std::vector<String>& class_ids = std::vector<String>(),
|
|
OutputArrayOfArrays quantized_images = noArray(),
|
|
const std::vector<Mat>& masks = std::vector<Mat>()) const;
|
|
|
|
/**
|
|
* \brief Add new object template.
|
|
*
|
|
* \param sources Source images, one for each modality.
|
|
* \param class_id Object class ID.
|
|
* \param object_mask Mask separating object from background.
|
|
* \param[out] bounding_box Optionally return bounding box of the extracted features.
|
|
*
|
|
* \return Template ID, or -1 if failed to extract a valid template.
|
|
*/
|
|
CV_WRAP int addTemplate(const std::vector<Mat>& sources, const String& class_id,
|
|
const Mat& object_mask, CV_OUT Rect* bounding_box = NULL);
|
|
|
|
/**
|
|
* \brief Add a new object template computed by external means.
|
|
*/
|
|
CV_WRAP int addSyntheticTemplate(const std::vector<Template>& templates, const String& class_id);
|
|
|
|
/**
|
|
* \brief Get the modalities used by this detector.
|
|
*
|
|
* You are not permitted to add/remove modalities, but you may dynamic_cast them to
|
|
* tweak parameters.
|
|
*/
|
|
CV_WRAP const std::vector< Ptr<Modality> >& getModalities() const { return modalities; }
|
|
|
|
/**
|
|
* \brief Get sampling step T at pyramid_level.
|
|
*/
|
|
CV_WRAP int getT(int pyramid_level) const { return T_at_level[pyramid_level]; }
|
|
|
|
/**
|
|
* \brief Get number of pyramid levels used by this detector.
|
|
*/
|
|
CV_WRAP int pyramidLevels() const { return pyramid_levels; }
|
|
|
|
/**
|
|
* \brief Get the template pyramid identified by template_id.
|
|
*
|
|
* For example, with 2 modalities (Gradient, Normal) and two pyramid levels
|
|
* (L0, L1), the order is (GradientL0, NormalL0, GradientL1, NormalL1).
|
|
*/
|
|
CV_WRAP const std::vector<Template>& getTemplates(const String& class_id, int template_id) const;
|
|
|
|
CV_WRAP int numTemplates() const;
|
|
CV_WRAP int numTemplates(const String& class_id) const;
|
|
CV_WRAP int numClasses() const { return static_cast<int>(class_templates.size()); }
|
|
|
|
CV_WRAP std::vector<String> classIds() const;
|
|
|
|
CV_WRAP void read(const FileNode& fn);
|
|
void write(FileStorage& fs) const;
|
|
|
|
String readClass(const FileNode& fn, const String &class_id_override = "");
|
|
void writeClass(const String& class_id, FileStorage& fs) const;
|
|
|
|
CV_WRAP void readClasses(const std::vector<String>& class_ids,
|
|
const String& format = "templates_%s.yml.gz");
|
|
CV_WRAP void writeClasses(const String& format = "templates_%s.yml.gz") const;
|
|
|
|
protected:
|
|
std::vector< Ptr<Modality> > modalities;
|
|
int pyramid_levels;
|
|
std::vector<int> T_at_level;
|
|
|
|
typedef std::vector<Template> TemplatePyramid;
|
|
typedef std::map<String, std::vector<TemplatePyramid> > TemplatesMap;
|
|
TemplatesMap class_templates;
|
|
|
|
typedef std::vector<Mat> LinearMemories;
|
|
// Indexed as [pyramid level][modality][quantized label]
|
|
typedef std::vector< std::vector<LinearMemories> > LinearMemoryPyramid;
|
|
|
|
void matchClass(const LinearMemoryPyramid& lm_pyramid,
|
|
const std::vector<Size>& sizes,
|
|
float threshold, std::vector<Match>& matches,
|
|
const String& class_id,
|
|
const std::vector<TemplatePyramid>& template_pyramids) const;
|
|
};
|
|
|
|
/**
|
|
* \brief Factory function for detector using LINE algorithm with color gradients.
|
|
*
|
|
* Default parameter settings suitable for VGA images.
|
|
*/
|
|
CV_EXPORTS_W Ptr<linemod::Detector> getDefaultLINE();
|
|
|
|
/**
|
|
* \brief Factory function for detector using LINE-MOD algorithm with color gradients
|
|
* and depth normals.
|
|
*
|
|
* Default parameter settings suitable for VGA images.
|
|
*/
|
|
CV_EXPORTS_W Ptr<linemod::Detector> getDefaultLINEMOD();
|
|
|
|
//! @}
|
|
|
|
} // namespace linemod
|
|
} // namespace cv
|
|
|
|
#endif // __OPENCV_OBJDETECT_LINEMOD_HPP__
|