134 lines
4.9 KiB
C++
134 lines
4.9 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_SALIENCY_BASE_CLASSES_HPP__
|
|
#define __OPENCV_SALIENCY_BASE_CLASSES_HPP__
|
|
|
|
#include "opencv2/core.hpp"
|
|
#include <opencv2/core/persistence.hpp>
|
|
#include "opencv2/imgproc.hpp"
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <complex>
|
|
|
|
namespace cv
|
|
{
|
|
namespace saliency
|
|
{
|
|
|
|
//! @addtogroup saliency
|
|
//! @{
|
|
|
|
/************************************ Saliency Base Class ************************************/
|
|
|
|
class CV_EXPORTS_W Saliency : public virtual Algorithm
|
|
{
|
|
public:
|
|
/**
|
|
* \brief Destructor
|
|
*/
|
|
virtual ~Saliency();
|
|
|
|
/**
|
|
* \brief Compute the saliency
|
|
* \param image The image.
|
|
* \param saliencyMap The computed saliency map.
|
|
* \return true if the saliency map is computed, false otherwise
|
|
*/
|
|
CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap );
|
|
|
|
protected:
|
|
|
|
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) = 0;
|
|
String className;
|
|
};
|
|
|
|
/************************************ Static Saliency Base Class ************************************/
|
|
class CV_EXPORTS_W StaticSaliency : public virtual Saliency
|
|
{
|
|
public:
|
|
|
|
/** @brief This function perform a binary map of given saliency map. This is obtained in this
|
|
way:
|
|
|
|
In a first step, to improve the definition of interest areas and facilitate identification of
|
|
targets, a segmentation by clustering is performed, using *K-means algorithm*. Then, to gain a
|
|
binary representation of clustered saliency map, since values of the map can vary according to
|
|
the characteristics of frame under analysis, it is not convenient to use a fixed threshold. So,
|
|
*Otsu's algorithm* is used, which assumes that the image to be thresholded contains two classes
|
|
of pixels or bi-modal histograms (e.g. foreground and back-ground pixels); later on, the
|
|
algorithm calculates the optimal threshold separating those two classes, so that their
|
|
intra-class variance is minimal.
|
|
|
|
@param _saliencyMap the saliency map obtained through one of the specialized algorithms
|
|
@param _binaryMap the binary map
|
|
*/
|
|
CV_WRAP bool computeBinaryMap( InputArray _saliencyMap, OutputArray _binaryMap );
|
|
protected:
|
|
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE = 0;
|
|
|
|
};
|
|
|
|
/************************************ Motion Saliency Base Class ************************************/
|
|
class CV_EXPORTS_W MotionSaliency : public virtual Saliency
|
|
{
|
|
|
|
protected:
|
|
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE = 0;
|
|
|
|
};
|
|
|
|
/************************************ Objectness Base Class ************************************/
|
|
class CV_EXPORTS_W Objectness : public virtual Saliency
|
|
{
|
|
|
|
protected:
|
|
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE = 0;
|
|
|
|
};
|
|
|
|
//! @}
|
|
|
|
} /* namespace saliency */
|
|
} /* namespace cv */
|
|
|
|
#endif
|