origin
This commit is contained in:
commit
7a4cb1fef1
302
YOLOPv2.cpp
Normal file
302
YOLOPv2.cpp
Normal file
@ -0,0 +1,302 @@
|
|||||||
|
#include "YOLOPv2.h"
|
||||||
|
#include <QLoggingCategory>
|
||||||
|
|
||||||
|
YOLOPv2::YOLOPv2(Net_config config)
|
||||||
|
{
|
||||||
|
this->confThreshold = config.confThreshold;
|
||||||
|
this->nmsThreshold = config.nmsThreshold;
|
||||||
|
//string model_path = config.modelpath;
|
||||||
|
//std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
|
||||||
|
|
||||||
|
//CUDA option set
|
||||||
|
OrtCUDAProviderOptions cuda_option;
|
||||||
|
cuda_option.device_id = 0;
|
||||||
|
cuda_option.arena_extend_strategy = 0;
|
||||||
|
cuda_option.cudnn_conv_algo_search = OrtCudnnConvAlgoSearchExhaustive;
|
||||||
|
cuda_option.gpu_mem_limit = SIZE_MAX;
|
||||||
|
cuda_option.do_copy_in_default_stream = 1;
|
||||||
|
//CUDA 加速
|
||||||
|
sessionOptions.SetIntraOpNumThreads(1);//设置线程数
|
||||||
|
sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); //函数用于设置在使用 ORT 库执行模型时应用的图优化级别。ORT_ENABLE_ALL 选项启用所有可用的优化,这可以导致更快速和更高效的执行。
|
||||||
|
sessionOptions.AppendExecutionProvider_CUDA(cuda_option);
|
||||||
|
|
||||||
|
|
||||||
|
const char *modelpath = "/home/wuxianfu/Projects/Fast-YolopV2/build/onnx/yolopv2_192x320.onnx" ;
|
||||||
|
ort_session = new Session(env, modelpath, sessionOptions);
|
||||||
|
|
||||||
|
|
||||||
|
size_t numInputNodes = ort_session->GetInputCount();
|
||||||
|
size_t numOutputNodes = ort_session->GetOutputCount();
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
AllocatorWithDefaultOptions allocator;
|
||||||
|
for (int i = 0; i < numInputNodes; i++)
|
||||||
|
{
|
||||||
|
//input_names.push_back(ort_session->GetInputName(i, allocator));
|
||||||
|
AllocatedStringPtr input_name_Ptr = ort_session->GetInputNameAllocated(i, allocator);
|
||||||
|
input_names.push_back(input_name_Ptr.get());
|
||||||
|
qDebug() << "Input Name: " << input_name_Ptr.get();
|
||||||
|
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
|
||||||
|
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
|
||||||
|
auto input_dims = input_tensor_info.GetShape();
|
||||||
|
input_node_dims.push_back(input_dims);
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < numOutputNodes; i++)
|
||||||
|
{
|
||||||
|
//output_names.push_back(ort_session->GetOutputName(i, allocator));
|
||||||
|
AllocatedStringPtr output_name_Ptr= ort_session->GetOutputNameAllocated(i, allocator);
|
||||||
|
output_names.push_back(output_name_Ptr.get());
|
||||||
|
qDebug() << "Output Name: " << output_name_Ptr.get();
|
||||||
|
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
|
||||||
|
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
|
||||||
|
auto output_dims = output_tensor_info.GetShape();
|
||||||
|
output_node_dims.push_back(output_dims);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
this->inpHeight = input_node_dims[0][2];
|
||||||
|
this->inpWidth = input_node_dims[0][3];
|
||||||
|
|
||||||
|
string classesFile = "/home/wuxianfu/Projects/Fast-YolopV2/build/coco.names";
|
||||||
|
ifstream ifs(classesFile.c_str());
|
||||||
|
string line;
|
||||||
|
while (getline(ifs, line)) this->class_names.push_back(line);
|
||||||
|
this->num_class = class_names.size();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void YOLOPv2::normalize_(Mat img)
|
||||||
|
{
|
||||||
|
// img.convertTo(img, CV_32F);
|
||||||
|
int row = img.rows;
|
||||||
|
int col = img.cols;
|
||||||
|
this->input_image_.resize(row * col * img.channels());
|
||||||
|
for (int c = 0; c < 3; c++)
|
||||||
|
{
|
||||||
|
for (int i = 0; i < row; i++)
|
||||||
|
{
|
||||||
|
for (int j = 0; j < col; j++)
|
||||||
|
{
|
||||||
|
float pix = img.ptr<uchar>(i)[j * 3 + 2 - c];
|
||||||
|
this->input_image_[c * row * col + i * col + j] = pix / 255.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void YOLOPv2::nms(vector<BoxInfo>& input_boxes)
|
||||||
|
{
|
||||||
|
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
|
||||||
|
vector<float> vArea(input_boxes.size());
|
||||||
|
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||||||
|
{
|
||||||
|
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
|
||||||
|
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<bool> isSuppressed(input_boxes.size(), false);
|
||||||
|
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||||||
|
{
|
||||||
|
if (isSuppressed[i]) { continue; }
|
||||||
|
for (int j = i + 1; j < int(input_boxes.size()); ++j)
|
||||||
|
{
|
||||||
|
if (isSuppressed[j]) { continue; }
|
||||||
|
float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
|
||||||
|
float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
|
||||||
|
float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
|
||||||
|
float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);
|
||||||
|
|
||||||
|
float w = (max)(float(0), xx2 - xx1 + 1);
|
||||||
|
float h = (max)(float(0), yy2 - yy1 + 1);
|
||||||
|
float inter = w * h;
|
||||||
|
float ovr = inter / (vArea[i] + vArea[j] - inter);
|
||||||
|
|
||||||
|
if (ovr >= this->nmsThreshold)
|
||||||
|
{
|
||||||
|
isSuppressed[j] = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// return post_nms;
|
||||||
|
int idx_t = 0;
|
||||||
|
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());
|
||||||
|
}
|
||||||
|
|
||||||
|
inline float sigmoid(float x)
|
||||||
|
{
|
||||||
|
return 1.0 / (1 + exp(-x));
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat YOLOPv2::detect(Mat& frame)
|
||||||
|
{
|
||||||
|
Mat dstimg;
|
||||||
|
resize(frame, dstimg, Size(this->inpWidth, this->inpHeight));
|
||||||
|
this->normalize_(dstimg);
|
||||||
|
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
|
||||||
|
|
||||||
|
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
|
||||||
|
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
|
||||||
|
|
||||||
|
// 开始推理
|
||||||
|
|
||||||
|
/*qDebug() << " output_names size: " << output_names.size()<< " sec \n";
|
||||||
|
qDebug() << " input_names: " << input_names[0]<< " sec \n";
|
||||||
|
qDebug() << " output_names: " << output_names[1]<< " sec \n";
|
||||||
|
|
||||||
|
|
||||||
|
vector<Value> ort_outputs = ort_session->Run(RunOptions{nullptr}, input_names.data(), &input_tensor_, 1, output_names.data(), output_names.size());*/
|
||||||
|
|
||||||
|
const char* inputNames[] = { "input" };//这两个值是根据netron查看onnx格式得到的输入输出名称
|
||||||
|
const char* outputNames[] = { "seg" , "ll" , "pred0" , "pred1" , "pred2" , };
|
||||||
|
vector<Value> ort_outputs = ort_session->Run(RunOptions{nullptr}, inputNames, &input_tensor_, 1, outputNames, 5);
|
||||||
|
|
||||||
|
/////generate proposals
|
||||||
|
|
||||||
|
vector<BoxInfo> generate_boxes;
|
||||||
|
float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth;
|
||||||
|
int n = 0, q = 0, i = 0, j = 0, nout = this->class_names.size() + 5, c = 0, area = 0;
|
||||||
|
for (n = 0; n < 3; n++) ///尺度
|
||||||
|
{
|
||||||
|
int num_grid_x = (int)(this->inpWidth / this->stride[n]);
|
||||||
|
int num_grid_y = (int)(this->inpHeight / this->stride[n]);
|
||||||
|
area = num_grid_x * num_grid_y;
|
||||||
|
const float* pdata = ort_outputs[n + 2].GetTensorMutableData<float>();
|
||||||
|
for (q = 0; q < 3; q++) ///anchor数
|
||||||
|
{
|
||||||
|
const float anchor_w = this->anchors[n][q * 2];
|
||||||
|
const float anchor_h = this->anchors[n][q * 2 + 1];
|
||||||
|
for (i = 0; i < num_grid_y; i++)
|
||||||
|
{
|
||||||
|
for (j = 0; j < num_grid_x; j++)
|
||||||
|
{
|
||||||
|
float box_score = sigmoid(pdata[4 * area + i * num_grid_x + j]);
|
||||||
|
if (box_score > this->confThreshold)
|
||||||
|
{
|
||||||
|
float max_class_socre = -100000, class_socre = 0;
|
||||||
|
int max_class_id = 0;
|
||||||
|
for (c = 0; c < this->class_names.size(); c++) //// get max socre
|
||||||
|
{
|
||||||
|
class_socre = pdata[(c + 5) * area + i * num_grid_x + j];
|
||||||
|
if (class_socre > max_class_socre)
|
||||||
|
{
|
||||||
|
max_class_socre = class_socre;
|
||||||
|
max_class_id = c;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
max_class_socre = sigmoid(max_class_socre) * box_score;
|
||||||
|
if (max_class_socre > this->confThreshold)
|
||||||
|
{
|
||||||
|
float cx = (sigmoid(pdata[i * num_grid_x + j]) * 2.f - 0.5f + j) * this->stride[n]; ///cx
|
||||||
|
float cy = (sigmoid(pdata[area + i * num_grid_x + j]) * 2.f - 0.5f + i) * this->stride[n]; ///cy
|
||||||
|
float w = powf(sigmoid(pdata[2 * area + i * num_grid_x + j]) * 2.f, 2.f) * anchor_w; ///w
|
||||||
|
float h = powf(sigmoid(pdata[3 * area + i * num_grid_x + j]) * 2.f, 2.f) * anchor_h; ///h
|
||||||
|
|
||||||
|
float xmin = (cx - 0.5*w)*ratiow;
|
||||||
|
float ymin = (cy - 0.5*h)*ratioh;
|
||||||
|
float xmax = (cx + 0.5*w)*ratiow;
|
||||||
|
float ymax = (cy + 0.5*h)*ratioh;
|
||||||
|
|
||||||
|
generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, max_class_id });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
pdata += area * nout;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
nms(generate_boxes);
|
||||||
|
|
||||||
|
Mat outimg = frame.clone();
|
||||||
|
for (size_t i = 0; i < generate_boxes.size(); ++i)
|
||||||
|
{
|
||||||
|
int xmin = int(generate_boxes[i].x1);
|
||||||
|
int ymin = int(generate_boxes[i].y1);
|
||||||
|
rectangle(outimg, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2);
|
||||||
|
string label = format("%.2f", generate_boxes[i].score);
|
||||||
|
label = this->class_names[generate_boxes[i].label-1] + ":" + label;
|
||||||
|
putText(outimg, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
const float* pdrive_area = ort_outputs[0].GetTensorMutableData<float>();
|
||||||
|
const float* plane_line = ort_outputs[1].GetTensorMutableData<float>();
|
||||||
|
area = this->inpHeight*this->inpWidth;
|
||||||
|
int min_y = -1;
|
||||||
|
vector<Point2f> points_L, points_R;
|
||||||
|
for (i = 0; i < frame.rows; i++)
|
||||||
|
{
|
||||||
|
bool flg = false;
|
||||||
|
int left = -1, right = -1;
|
||||||
|
for (j = 0; j < frame.cols; j++)
|
||||||
|
{
|
||||||
|
const int x = int(j / ratiow);
|
||||||
|
const int y = int(i / ratioh);
|
||||||
|
if (pdrive_area[y * this->inpWidth + x] < pdrive_area[area + y * this->inpWidth + x])
|
||||||
|
{
|
||||||
|
outimg.at<Vec3b>(i, j)[0] = 0;
|
||||||
|
outimg.at<Vec3b>(i, j)[1] = 255;
|
||||||
|
outimg.at<Vec3b>(i, j)[2] = 0;
|
||||||
|
}
|
||||||
|
if (plane_line[y * this->inpWidth + x] > 0.5)
|
||||||
|
{
|
||||||
|
outimg.at<Vec3b>(i, j)[0] = 255;
|
||||||
|
outimg.at<Vec3b>(i, j)[1] = 0;
|
||||||
|
outimg.at<Vec3b>(i, j)[2] = 0;
|
||||||
|
if (!flg && j >= frame.cols / 2 && right == -1) { // 记录图像右半部分最靠左的车道线的左边缘坐标
|
||||||
|
right = j;
|
||||||
|
}
|
||||||
|
flg = true;
|
||||||
|
} else {
|
||||||
|
if (flg && j - 1 < frame.cols / 2) { //记录图像左半部分最靠右的车道线的右边缘坐标
|
||||||
|
left = j - 1;
|
||||||
|
}
|
||||||
|
flg = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (min_y == -1 && (left != -1 || right != -1)) {
|
||||||
|
min_y = i;
|
||||||
|
}
|
||||||
|
if (left != -1){
|
||||||
|
points_L.push_back(Point2f(left, i));
|
||||||
|
}
|
||||||
|
if (right != -1){
|
||||||
|
points_R.push_back(Point2f(right, i));
|
||||||
|
}
|
||||||
|
//若左右参考车道线均存在,计算并标记中心点
|
||||||
|
if (left > -1 && right > -1) {
|
||||||
|
int mid = (left + right) / 2;
|
||||||
|
for (int k = -5; k <= 5; k++) {
|
||||||
|
outimg.at<Vec3b>(i, mid+k)[0] = 255;
|
||||||
|
outimg.at<Vec3b>(i, mid+k)[1] = 255;
|
||||||
|
outimg.at<Vec3b>(i, mid+k)[2] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//(需要考虑的问题 1.双车道3条线 2.拐角处曲线 3.近处显示不全 4.两条线粘连)
|
||||||
|
}
|
||||||
|
//备选方案,对左右车道线分别拟合直线并计算中心线解析式 泛化 鲁棒 (目前有bug
|
||||||
|
if (points_L.size() && points_R.size()) {
|
||||||
|
Vec4f line_L, line_R;
|
||||||
|
float kL, bL, kR, bR, kM, bM; // x=ky+b
|
||||||
|
fitLine(points_L, line_L, DIST_WELSCH, 0, 0.01, 0.01);
|
||||||
|
fitLine(points_R, line_R, DIST_WELSCH, 0, 0.01, 0.01);
|
||||||
|
kL = line_L[0] / line_L[1];
|
||||||
|
bL = line_L[2] - kL * line_L[3];
|
||||||
|
kR = line_R[0] / line_R[1];
|
||||||
|
bR = line_R[2] - kR * line_R[3];
|
||||||
|
kM = (kL + kR) / 2;
|
||||||
|
bM = (bL + bR) / 2;
|
||||||
|
for (int i = min_y; i < frame.rows; i++) {
|
||||||
|
int mid = round(kM * i + bM);
|
||||||
|
for (int k = -5; k <= 5; k++) {
|
||||||
|
outimg.at<Vec3b>(i, mid+k)[0] = 255;
|
||||||
|
outimg.at<Vec3b>(i, mid+k)[1] = 0;
|
||||||
|
outimg.at<Vec3b>(i, mid+k)[2] = 255;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return outimg;
|
||||||
|
}
|
62
YOLOPv2.h
Normal file
62
YOLOPv2.h
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
#ifndef YOLOPV2_H
|
||||||
|
#define YOLOPV2_H
|
||||||
|
|
||||||
|
#include <fstream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <iostream>
|
||||||
|
#include <opencv2/imgproc.hpp>
|
||||||
|
#include <opencv2/highgui.hpp>
|
||||||
|
#include <onnxruntime_cxx_api.h>
|
||||||
|
|
||||||
|
using namespace cv;
|
||||||
|
using namespace Ort;
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
struct Net_config
|
||||||
|
{
|
||||||
|
float confThreshold; // Confidence threshold
|
||||||
|
float nmsThreshold; // Non-maximum suppression threshold
|
||||||
|
string modelpath;
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef struct BoxInfo
|
||||||
|
{
|
||||||
|
float x1;
|
||||||
|
float y1;
|
||||||
|
float x2;
|
||||||
|
float y2;
|
||||||
|
float score;
|
||||||
|
int label;
|
||||||
|
} BoxInfo;
|
||||||
|
|
||||||
|
class YOLOPv2
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
YOLOPv2(Net_config config);
|
||||||
|
Mat detect(Mat& frame);
|
||||||
|
private:
|
||||||
|
int inpWidth;
|
||||||
|
int inpHeight;
|
||||||
|
int nout;
|
||||||
|
int num_proposal;
|
||||||
|
vector<string> class_names;
|
||||||
|
int num_class;
|
||||||
|
|
||||||
|
float confThreshold;
|
||||||
|
float nmsThreshold;
|
||||||
|
vector<float> input_image_;
|
||||||
|
void normalize_(Mat img);
|
||||||
|
void nms(vector<BoxInfo>& input_boxes);
|
||||||
|
const float anchors[3][6] = { {12, 16, 19, 36, 40, 28}, {36, 75, 76, 55, 72, 146},{142, 110, 192, 243, 459, 401} };
|
||||||
|
const float stride[3] = { 8.0, 16.0, 32.0 };
|
||||||
|
|
||||||
|
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "YOLOPv2");
|
||||||
|
Ort::Session *ort_session = nullptr;
|
||||||
|
SessionOptions sessionOptions = SessionOptions();
|
||||||
|
vector<char*> input_names;
|
||||||
|
vector<char*> output_names;
|
||||||
|
vector<vector<int64_t>> input_node_dims; // >=1 outputs
|
||||||
|
vector<vector<int64_t>> output_node_dims; // >=1 outputs
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // YOLOPV2_H
|
61
build/ui_mainwindow.h
Normal file
61
build/ui_mainwindow.h
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
/********************************************************************************
|
||||||
|
** Form generated from reading UI file 'mainwindow.ui'
|
||||||
|
**
|
||||||
|
** Created by: Qt User Interface Compiler version 5.15.3
|
||||||
|
**
|
||||||
|
** WARNING! All changes made in this file will be lost when recompiling UI file!
|
||||||
|
********************************************************************************/
|
||||||
|
|
||||||
|
#ifndef UI_MAINWINDOW_H
|
||||||
|
#define UI_MAINWINDOW_H
|
||||||
|
|
||||||
|
#include <QtCore/QVariant>
|
||||||
|
#include <QtWidgets/QApplication>
|
||||||
|
#include <QtWidgets/QMainWindow>
|
||||||
|
#include <QtWidgets/QMenuBar>
|
||||||
|
#include <QtWidgets/QStatusBar>
|
||||||
|
#include <QtWidgets/QWidget>
|
||||||
|
|
||||||
|
QT_BEGIN_NAMESPACE
|
||||||
|
|
||||||
|
class Ui_MainWindow
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
QWidget *centralwidget;
|
||||||
|
QMenuBar *menubar;
|
||||||
|
QStatusBar *statusbar;
|
||||||
|
|
||||||
|
void setupUi(QMainWindow *MainWindow)
|
||||||
|
{
|
||||||
|
if (MainWindow->objectName().isEmpty())
|
||||||
|
MainWindow->setObjectName(QString::fromUtf8("MainWindow"));
|
||||||
|
MainWindow->resize(800, 600);
|
||||||
|
centralwidget = new QWidget(MainWindow);
|
||||||
|
centralwidget->setObjectName(QString::fromUtf8("centralwidget"));
|
||||||
|
MainWindow->setCentralWidget(centralwidget);
|
||||||
|
menubar = new QMenuBar(MainWindow);
|
||||||
|
menubar->setObjectName(QString::fromUtf8("menubar"));
|
||||||
|
MainWindow->setMenuBar(menubar);
|
||||||
|
statusbar = new QStatusBar(MainWindow);
|
||||||
|
statusbar->setObjectName(QString::fromUtf8("statusbar"));
|
||||||
|
MainWindow->setStatusBar(statusbar);
|
||||||
|
|
||||||
|
retranslateUi(MainWindow);
|
||||||
|
|
||||||
|
QMetaObject::connectSlotsByName(MainWindow);
|
||||||
|
} // setupUi
|
||||||
|
|
||||||
|
void retranslateUi(QMainWindow *MainWindow)
|
||||||
|
{
|
||||||
|
MainWindow->setWindowTitle(QCoreApplication::translate("MainWindow", "MainWindow", nullptr));
|
||||||
|
} // retranslateUi
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace Ui {
|
||||||
|
class MainWindow: public Ui_MainWindow {};
|
||||||
|
} // namespace Ui
|
||||||
|
|
||||||
|
QT_END_NAMESPACE
|
||||||
|
|
||||||
|
#endif // UI_MAINWINDOW_H
|
51
fast-yolopv2.pro
Normal file
51
fast-yolopv2.pro
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
QT += core gui widgets
|
||||||
|
|
||||||
|
greaterThan(QT_MAJOR_VERSION, 4): QT += widgets
|
||||||
|
|
||||||
|
CONFIG += c++11
|
||||||
|
DEFINES += OPENCV
|
||||||
|
DEFINES += GPU
|
||||||
|
DEFINES += CUDNN
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# You can make your code fail to compile if it uses deprecated APIs.
|
||||||
|
# In order to do so, uncomment the following line.
|
||||||
|
#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000 # disables all the APIs deprecated before Qt 6.0.0
|
||||||
|
|
||||||
|
# 包含 OpenCV 的头文件路径
|
||||||
|
INCLUDEPATH += /usr/local/Opencv-4.10.0/include/opencv4
|
||||||
|
# 包含 Cuda 的头文件路径
|
||||||
|
INCLUDEPATH += /usr/local/cuda-12.6/include
|
||||||
|
# 包含 onnx 的头文件路径
|
||||||
|
INCLUDEPATH += /usr/local/include/onnxruntime
|
||||||
|
|
||||||
|
|
||||||
|
# 链接到 OpenCV 的库文件
|
||||||
|
LIBS += -L/usr/local/Opencv-4.10.0/lib \
|
||||||
|
-lopencv_core \
|
||||||
|
-lopencv_imgproc \
|
||||||
|
-lopencv_highgui \
|
||||||
|
-lopencv_imgcodecs \
|
||||||
|
-lopencv_videoio
|
||||||
|
|
||||||
|
# 链接到 onnx 的库文件
|
||||||
|
LIBS += -L/usr/local/lib -lonnxruntime
|
||||||
|
|
||||||
|
|
||||||
|
SOURCES += \
|
||||||
|
YOLOPv2.cpp \
|
||||||
|
main.cpp \
|
||||||
|
mainwindow.cpp
|
||||||
|
|
||||||
|
HEADERS += \
|
||||||
|
YOLOPv2.h \
|
||||||
|
mainwindow.h
|
||||||
|
|
||||||
|
FORMS += \
|
||||||
|
mainwindow.ui
|
||||||
|
|
||||||
|
# Default rules for deployment.
|
||||||
|
qnx: target.path = /tmp/$${TARGET}/bin
|
||||||
|
else: unix:!android: target.path = /opt/$${TARGET}/bin
|
||||||
|
!isEmpty(target.path): INSTALLS += target
|
11
main.cpp
Normal file
11
main.cpp
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
#include "mainwindow.h"
|
||||||
|
|
||||||
|
#include <QApplication>
|
||||||
|
|
||||||
|
int main(int argc, char *argv[])
|
||||||
|
{
|
||||||
|
QApplication a(argc, argv);
|
||||||
|
MainWindow w;
|
||||||
|
w.show();
|
||||||
|
return a.exec();
|
||||||
|
}
|
201
mainwindow.cpp
Normal file
201
mainwindow.cpp
Normal file
@ -0,0 +1,201 @@
|
|||||||
|
#include "mainwindow.h"
|
||||||
|
#include "ui_mainwindow.h"
|
||||||
|
#include "YOLOPv2.h"
|
||||||
|
#include <string>
|
||||||
|
#include <QFile>
|
||||||
|
#include <QLoggingCategory>
|
||||||
|
|
||||||
|
|
||||||
|
string gstreamer_pipeline (int capture_width, int capture_height, int display_width, int display_height, int framerate, int flip_method)
|
||||||
|
{
|
||||||
|
return "nvarguscamerasrc ! video/x-raw(memory:NVMM), width=(int)" + to_string(capture_width) + ", height=(int)" +
|
||||||
|
to_string(capture_height) + ", format=(string)NV12, framerate=(fraction)" + to_string(framerate) +
|
||||||
|
"/1 ! nvvidconv flip-method=" + to_string(flip_method) + " ! video/x-raw, width=(int)" + to_string(display_width) + ", height=(int)" +
|
||||||
|
to_string(display_height) + ", format=(string)BGRx ! videoconvert ! video/x-raw, format=(string)BGR ! appsink";
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
MainWindow::MainWindow(QWidget *parent)
|
||||||
|
: QMainWindow(parent)
|
||||||
|
, ui(new Ui::MainWindow)
|
||||||
|
{
|
||||||
|
ui->setupUi(this);
|
||||||
|
//ShowImage();
|
||||||
|
ShowVideo();
|
||||||
|
//OpenCSICamera();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
MainWindow::~MainWindow()
|
||||||
|
{
|
||||||
|
delete ui;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void MainWindow::ShowImage()
|
||||||
|
{
|
||||||
|
Net_config YOLOPv2_nets = { 0.5, 0.5, "/home/wuxianfu/Projects/Fast-YolopV2/build/onnx/yolopv2_192x320.onnx" }; ////choices = onnx文件夹里的文件
|
||||||
|
YOLOPv2 net(YOLOPv2_nets);
|
||||||
|
string imgpath = "/home/wuxianfu/Projects/Fast-YolopV2/build/images/3c0e7240-96e390d2.jpg";
|
||||||
|
static const string kWinName = "Deep learning object detection in ONNXRuntime";
|
||||||
|
namedWindow(kWinName, WINDOW_NORMAL);
|
||||||
|
|
||||||
|
Mat srcimg = imread(imgpath);
|
||||||
|
imshow(kWinName, srcimg);
|
||||||
|
|
||||||
|
|
||||||
|
Mat outimg = net.detect(srcimg);
|
||||||
|
|
||||||
|
imshow(kWinName, outimg);
|
||||||
|
waitKey(0);
|
||||||
|
destroyAllWindows();
|
||||||
|
}
|
||||||
|
|
||||||
|
void MainWindow::ShowVideo()
|
||||||
|
{
|
||||||
|
Net_config YOLOPv2_nets = { 0.5, 0.5, "/home/wuxianfu/Projects/Fast-YolopV2/build/onnx/yolopv2_736x1280.onnx" }; ////choices = onnx文件夹里的文件
|
||||||
|
YOLOPv2 net(YOLOPv2_nets);
|
||||||
|
static const string kWinName = "Deep learning object detection in ONNXRuntime";
|
||||||
|
namedWindow(kWinName, WINDOW_NORMAL);
|
||||||
|
|
||||||
|
cv::VideoCapture cap("/home/wuxianfu/Projects/Fast-YolopV2/build/videos/566a351c29c00924a337e91e85fa7dec.mp4");
|
||||||
|
if (!cap.isOpened()) {
|
||||||
|
std::cerr << "Error opening video stream" << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat frame;
|
||||||
|
while (true) {
|
||||||
|
cap >> frame; // 读取一帧
|
||||||
|
if (frame.empty()) {
|
||||||
|
std::cerr << "Error reading frame" << std::endl;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
auto start = std::chrono::steady_clock::now();
|
||||||
|
Mat outimg = net.detect(frame);
|
||||||
|
auto end = std::chrono::steady_clock::now();
|
||||||
|
std::chrono::duration<double> spent = end - start;
|
||||||
|
qDebug()<< " Time: " << spent.count() << " sec \n";
|
||||||
|
|
||||||
|
imshow(kWinName, outimg);
|
||||||
|
if (cv::waitKey(5) >= 0) break; // 按任意键退出循环
|
||||||
|
}
|
||||||
|
cap.release(); // 释放资源
|
||||||
|
cv::destroyAllWindows(); // 关闭所有OpenCV窗口
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void MainWindow::OpenUSBCamera() {
|
||||||
|
|
||||||
|
Net_config YOLOPv2_nets = { 0.5, 0.5, "/home/wuxianfu/Projects/Fast-YolopV2/build/onnx/yolopv2_192x320.onnx" }; ////choices = onnx文件夹里的文件
|
||||||
|
YOLOPv2 net(YOLOPv2_nets);
|
||||||
|
cv::VideoCapture cap(1); // 使用默认的摄像头索引(通常是0)
|
||||||
|
if (!cap.isOpened()) {
|
||||||
|
std::cerr << "Error opening video stream" << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat frame;
|
||||||
|
while (true) {
|
||||||
|
cap >> frame; // 读取一帧
|
||||||
|
if (frame.empty()) {
|
||||||
|
std::cerr << "Error reading frame" << std::endl;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Mat outimg = net.detect(frame);
|
||||||
|
cv::imshow("USB Camera", outimg); // 显示帧
|
||||||
|
if (cv::waitKey(10) >= 0) break; // 按任意键退出循环
|
||||||
|
}
|
||||||
|
cap.release(); // 释放资源
|
||||||
|
cv::destroyAllWindows(); // 关闭所有OpenCV窗口
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void MainWindow::OpenCSICamera() {
|
||||||
|
|
||||||
|
|
||||||
|
Net_config YOLOPv2_nets = { 0.5, 0.5, "/home/wuxianfu/Projects/Fast-YolopV2/build/onnx/yolopv2_736x1280.onnx" }; ////choices = onnx文件夹里的文件
|
||||||
|
YOLOPv2 net(YOLOPv2_nets);
|
||||||
|
string imgpath = "/home/wuxianfu/Projects/Fast-YolopV2/build/images/0ace96c3-48481887.jpg";
|
||||||
|
Mat srcimg = imread(imgpath);
|
||||||
|
|
||||||
|
|
||||||
|
int capture_width = 3280 ;
|
||||||
|
int capture_height = 1848 ;
|
||||||
|
int display_width = 3280 ;
|
||||||
|
int display_height = 1848 ;
|
||||||
|
|
||||||
|
//3280*2464最大支持21帧
|
||||||
|
//3280*1848最大支持28帧
|
||||||
|
//1920*1080最大支持29帧
|
||||||
|
//1640*1232最大支持29帧
|
||||||
|
//1280*720 最大支持59帧
|
||||||
|
int framerate = 10;
|
||||||
|
int flip_method = 0;
|
||||||
|
|
||||||
|
//创建管道
|
||||||
|
string pipeline = gstreamer_pipeline(capture_width,
|
||||||
|
capture_height,
|
||||||
|
display_width,
|
||||||
|
display_height,
|
||||||
|
framerate,
|
||||||
|
flip_method);
|
||||||
|
std::cout << "使用gstreamer管道: \n\t" << pipeline << "\n";
|
||||||
|
|
||||||
|
//管道与视频流绑定
|
||||||
|
VideoCapture cap(pipeline, CAP_GSTREAMER);
|
||||||
|
if(!cap.isOpened())
|
||||||
|
{
|
||||||
|
std::cout<<"打开摄像头失败."<<std::endl;
|
||||||
|
return ;
|
||||||
|
}
|
||||||
|
|
||||||
|
qDebug()<<"打开摄像头成功.";
|
||||||
|
|
||||||
|
//创建显示窗口
|
||||||
|
namedWindow("CSI Camera", WINDOW_AUTOSIZE);
|
||||||
|
Mat img;
|
||||||
|
|
||||||
|
//逐帧显示
|
||||||
|
while(true)
|
||||||
|
{
|
||||||
|
qDebug()<<"开始捕获摄像头.";
|
||||||
|
auto start = std::chrono::steady_clock::now();
|
||||||
|
if (!cap.read(img))
|
||||||
|
{
|
||||||
|
std::cout<<"捕获失败"<<std::endl;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
int new_width,new_height,width,height;
|
||||||
|
width=img.cols;
|
||||||
|
height=img.rows;
|
||||||
|
|
||||||
|
//调整图像大小
|
||||||
|
new_width=1000;
|
||||||
|
if(width>800)
|
||||||
|
{
|
||||||
|
new_height=int(new_width*1.0/width*height);
|
||||||
|
}
|
||||||
|
cv::resize(img, img, cv::Size(new_width, new_height));
|
||||||
|
|
||||||
|
Mat outimg = net.detect(img);
|
||||||
|
auto end = std::chrono::steady_clock::now();
|
||||||
|
std::chrono::duration<double> spent = end - start;
|
||||||
|
qDebug()<< " Time: " << spent.count() << " sec \n";
|
||||||
|
|
||||||
|
imshow("CSI Camera",outimg);
|
||||||
|
|
||||||
|
int keycode = cv::waitKey(2) & 0xff ; //ESC键退出
|
||||||
|
if (keycode == 27) break ;
|
||||||
|
}
|
||||||
|
|
||||||
|
cap.release();
|
||||||
|
destroyAllWindows() ;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
32
mainwindow.h
Normal file
32
mainwindow.h
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
#ifndef MAINWINDOW_H
|
||||||
|
#define MAINWINDOW_H
|
||||||
|
|
||||||
|
#include <QMainWindow>
|
||||||
|
|
||||||
|
QT_BEGIN_NAMESPACE
|
||||||
|
namespace Ui { class MainWindow; }
|
||||||
|
QT_END_NAMESPACE
|
||||||
|
|
||||||
|
class Detector;
|
||||||
|
|
||||||
|
class MainWindow : public QMainWindow
|
||||||
|
{
|
||||||
|
Q_OBJECT
|
||||||
|
|
||||||
|
public:
|
||||||
|
MainWindow(QWidget *parent = nullptr);
|
||||||
|
~MainWindow();
|
||||||
|
|
||||||
|
public:
|
||||||
|
void OpenUSBCamera();
|
||||||
|
void OpenCSICamera();
|
||||||
|
void ShowImage();
|
||||||
|
void ShowVideo();
|
||||||
|
|
||||||
|
std::vector<std::string> m_vObjects_Names; //检测目标名称
|
||||||
|
Detector *m_pDetector;
|
||||||
|
|
||||||
|
private:
|
||||||
|
Ui::MainWindow *ui;
|
||||||
|
};
|
||||||
|
#endif // MAINWINDOW_H
|
22
mainwindow.ui
Normal file
22
mainwindow.ui
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<ui version="4.0">
|
||||||
|
<class>MainWindow</class>
|
||||||
|
<widget class="QMainWindow" name="MainWindow">
|
||||||
|
<property name="geometry">
|
||||||
|
<rect>
|
||||||
|
<x>0</x>
|
||||||
|
<y>0</y>
|
||||||
|
<width>800</width>
|
||||||
|
<height>600</height>
|
||||||
|
</rect>
|
||||||
|
</property>
|
||||||
|
<property name="windowTitle">
|
||||||
|
<string>MainWindow</string>
|
||||||
|
</property>
|
||||||
|
<widget class="QWidget" name="centralwidget"/>
|
||||||
|
<widget class="QMenuBar" name="menubar"/>
|
||||||
|
<widget class="QStatusBar" name="statusbar"/>
|
||||||
|
</widget>
|
||||||
|
<resources/>
|
||||||
|
<connections/>
|
||||||
|
</ui>
|
Loading…
Reference in New Issue
Block a user