303 lines
12 KiB
C++
303 lines
12 KiB
C++
#include "YOLOPv2.h"
|
||
#include <QLoggingCategory>
|
||
|
||
YOLOPv2::YOLOPv2(Net_config config)
|
||
{
|
||
this->confThreshold = config.confThreshold;
|
||
this->nmsThreshold = config.nmsThreshold;
|
||
//string model_path = config.modelpath;
|
||
//std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
|
||
|
||
//CUDA option set
|
||
OrtCUDAProviderOptions cuda_option;
|
||
cuda_option.device_id = 0;
|
||
cuda_option.arena_extend_strategy = 0;
|
||
cuda_option.cudnn_conv_algo_search = OrtCudnnConvAlgoSearchExhaustive;
|
||
cuda_option.gpu_mem_limit = SIZE_MAX;
|
||
cuda_option.do_copy_in_default_stream = 1;
|
||
//CUDA 加速
|
||
sessionOptions.SetIntraOpNumThreads(1);//设置线程数
|
||
sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); //函数用于设置在使用 ORT 库执行模型时应用的图优化级别。ORT_ENABLE_ALL 选项启用所有可用的优化,这可以导致更快速和更高效的执行。
|
||
sessionOptions.AppendExecutionProvider_CUDA(cuda_option);
|
||
|
||
|
||
const char *modelpath = "/home/wuxianfu/Projects/Fast-YolopV2/build/onnx/yolopv2_192x320.onnx" ;
|
||
ort_session = new Session(env, modelpath, sessionOptions);
|
||
|
||
|
||
size_t numInputNodes = ort_session->GetInputCount();
|
||
size_t numOutputNodes = ort_session->GetOutputCount();
|
||
|
||
|
||
|
||
AllocatorWithDefaultOptions allocator;
|
||
for (int i = 0; i < numInputNodes; i++)
|
||
{
|
||
//input_names.push_back(ort_session->GetInputName(i, allocator));
|
||
AllocatedStringPtr input_name_Ptr = ort_session->GetInputNameAllocated(i, allocator);
|
||
input_names.push_back(input_name_Ptr.get());
|
||
qDebug() << "Input Name: " << input_name_Ptr.get();
|
||
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
|
||
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
|
||
auto input_dims = input_tensor_info.GetShape();
|
||
input_node_dims.push_back(input_dims);
|
||
|
||
|
||
}
|
||
|
||
for (int i = 0; i < numOutputNodes; i++)
|
||
{
|
||
//output_names.push_back(ort_session->GetOutputName(i, allocator));
|
||
AllocatedStringPtr output_name_Ptr= ort_session->GetOutputNameAllocated(i, allocator);
|
||
output_names.push_back(output_name_Ptr.get());
|
||
qDebug() << "Output Name: " << output_name_Ptr.get();
|
||
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
|
||
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
|
||
auto output_dims = output_tensor_info.GetShape();
|
||
output_node_dims.push_back(output_dims);
|
||
}
|
||
|
||
|
||
this->inpHeight = input_node_dims[0][2];
|
||
this->inpWidth = input_node_dims[0][3];
|
||
|
||
string classesFile = "/home/wuxianfu/Projects/Fast-YolopV2/build/coco.names";
|
||
ifstream ifs(classesFile.c_str());
|
||
string line;
|
||
while (getline(ifs, line)) this->class_names.push_back(line);
|
||
this->num_class = class_names.size();
|
||
|
||
}
|
||
|
||
void YOLOPv2::normalize_(Mat img)
|
||
{
|
||
// img.convertTo(img, CV_32F);
|
||
int row = img.rows;
|
||
int col = img.cols;
|
||
this->input_image_.resize(row * col * img.channels());
|
||
for (int c = 0; c < 3; c++)
|
||
{
|
||
for (int i = 0; i < row; i++)
|
||
{
|
||
for (int j = 0; j < col; j++)
|
||
{
|
||
float pix = img.ptr<uchar>(i)[j * 3 + 2 - c];
|
||
this->input_image_[c * row * col + i * col + j] = pix / 255.0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void YOLOPv2::nms(vector<BoxInfo>& input_boxes)
|
||
{
|
||
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
|
||
vector<float> vArea(input_boxes.size());
|
||
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||
{
|
||
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
|
||
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
|
||
}
|
||
|
||
vector<bool> isSuppressed(input_boxes.size(), false);
|
||
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||
{
|
||
if (isSuppressed[i]) { continue; }
|
||
for (int j = i + 1; j < int(input_boxes.size()); ++j)
|
||
{
|
||
if (isSuppressed[j]) { continue; }
|
||
float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
|
||
float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
|
||
float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
|
||
float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);
|
||
|
||
float w = (max)(float(0), xx2 - xx1 + 1);
|
||
float h = (max)(float(0), yy2 - yy1 + 1);
|
||
float inter = w * h;
|
||
float ovr = inter / (vArea[i] + vArea[j] - inter);
|
||
|
||
if (ovr >= this->nmsThreshold)
|
||
{
|
||
isSuppressed[j] = true;
|
||
}
|
||
}
|
||
}
|
||
// return post_nms;
|
||
int idx_t = 0;
|
||
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());
|
||
}
|
||
|
||
inline float sigmoid(float x)
|
||
{
|
||
return 1.0 / (1 + exp(-x));
|
||
}
|
||
|
||
Mat YOLOPv2::detect(Mat& frame)
|
||
{
|
||
Mat dstimg;
|
||
resize(frame, dstimg, Size(this->inpWidth, this->inpHeight));
|
||
this->normalize_(dstimg);
|
||
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
|
||
|
||
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
|
||
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
|
||
|
||
// 开始推理
|
||
|
||
/*qDebug() << " output_names size: " << output_names.size()<< " sec \n";
|
||
qDebug() << " input_names: " << input_names[0]<< " sec \n";
|
||
qDebug() << " output_names: " << output_names[1]<< " sec \n";
|
||
|
||
|
||
vector<Value> ort_outputs = ort_session->Run(RunOptions{nullptr}, input_names.data(), &input_tensor_, 1, output_names.data(), output_names.size());*/
|
||
|
||
const char* inputNames[] = { "input" };//这两个值是根据netron查看onnx格式得到的输入输出名称
|
||
const char* outputNames[] = { "seg" , "ll" , "pred0" , "pred1" , "pred2" , };
|
||
vector<Value> ort_outputs = ort_session->Run(RunOptions{nullptr}, inputNames, &input_tensor_, 1, outputNames, 5);
|
||
|
||
/////generate proposals
|
||
|
||
vector<BoxInfo> generate_boxes;
|
||
float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth;
|
||
int n = 0, q = 0, i = 0, j = 0, nout = this->class_names.size() + 5, c = 0, area = 0;
|
||
for (n = 0; n < 3; n++) ///尺度
|
||
{
|
||
int num_grid_x = (int)(this->inpWidth / this->stride[n]);
|
||
int num_grid_y = (int)(this->inpHeight / this->stride[n]);
|
||
area = num_grid_x * num_grid_y;
|
||
const float* pdata = ort_outputs[n + 2].GetTensorMutableData<float>();
|
||
for (q = 0; q < 3; q++) ///anchor数
|
||
{
|
||
const float anchor_w = this->anchors[n][q * 2];
|
||
const float anchor_h = this->anchors[n][q * 2 + 1];
|
||
for (i = 0; i < num_grid_y; i++)
|
||
{
|
||
for (j = 0; j < num_grid_x; j++)
|
||
{
|
||
float box_score = sigmoid(pdata[4 * area + i * num_grid_x + j]);
|
||
if (box_score > this->confThreshold)
|
||
{
|
||
float max_class_socre = -100000, class_socre = 0;
|
||
int max_class_id = 0;
|
||
for (c = 0; c < this->class_names.size(); c++) //// get max socre
|
||
{
|
||
class_socre = pdata[(c + 5) * area + i * num_grid_x + j];
|
||
if (class_socre > max_class_socre)
|
||
{
|
||
max_class_socre = class_socre;
|
||
max_class_id = c;
|
||
}
|
||
}
|
||
max_class_socre = sigmoid(max_class_socre) * box_score;
|
||
if (max_class_socre > this->confThreshold)
|
||
{
|
||
float cx = (sigmoid(pdata[i * num_grid_x + j]) * 2.f - 0.5f + j) * this->stride[n]; ///cx
|
||
float cy = (sigmoid(pdata[area + i * num_grid_x + j]) * 2.f - 0.5f + i) * this->stride[n]; ///cy
|
||
float w = powf(sigmoid(pdata[2 * area + i * num_grid_x + j]) * 2.f, 2.f) * anchor_w; ///w
|
||
float h = powf(sigmoid(pdata[3 * area + i * num_grid_x + j]) * 2.f, 2.f) * anchor_h; ///h
|
||
|
||
float xmin = (cx - 0.5*w)*ratiow;
|
||
float ymin = (cy - 0.5*h)*ratioh;
|
||
float xmax = (cx + 0.5*w)*ratiow;
|
||
float ymax = (cy + 0.5*h)*ratioh;
|
||
|
||
generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, max_class_id });
|
||
}
|
||
}
|
||
}
|
||
}
|
||
pdata += area * nout;
|
||
}
|
||
}
|
||
nms(generate_boxes);
|
||
|
||
Mat outimg = frame.clone();
|
||
for (size_t i = 0; i < generate_boxes.size(); ++i)
|
||
{
|
||
int xmin = int(generate_boxes[i].x1);
|
||
int ymin = int(generate_boxes[i].y1);
|
||
rectangle(outimg, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2);
|
||
string label = format("%.2f", generate_boxes[i].score);
|
||
label = this->class_names[generate_boxes[i].label-1] + ":" + label;
|
||
putText(outimg, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
|
||
}
|
||
|
||
const float* pdrive_area = ort_outputs[0].GetTensorMutableData<float>();
|
||
const float* plane_line = ort_outputs[1].GetTensorMutableData<float>();
|
||
area = this->inpHeight*this->inpWidth;
|
||
int min_y = -1;
|
||
vector<Point2f> points_L, points_R;
|
||
for (i = 0; i < frame.rows; i++)
|
||
{
|
||
bool flg = false;
|
||
int left = -1, right = -1;
|
||
for (j = 0; j < frame.cols; j++)
|
||
{
|
||
const int x = int(j / ratiow);
|
||
const int y = int(i / ratioh);
|
||
if (pdrive_area[y * this->inpWidth + x] < pdrive_area[area + y * this->inpWidth + x])
|
||
{
|
||
outimg.at<Vec3b>(i, j)[0] = 0;
|
||
outimg.at<Vec3b>(i, j)[1] = 255;
|
||
outimg.at<Vec3b>(i, j)[2] = 0;
|
||
}
|
||
if (plane_line[y * this->inpWidth + x] > 0.5)
|
||
{
|
||
outimg.at<Vec3b>(i, j)[0] = 255;
|
||
outimg.at<Vec3b>(i, j)[1] = 0;
|
||
outimg.at<Vec3b>(i, j)[2] = 0;
|
||
if (!flg && j >= frame.cols / 2 && right == -1) { // 记录图像右半部分最靠左的车道线的左边缘坐标
|
||
right = j;
|
||
}
|
||
flg = true;
|
||
} else {
|
||
if (flg && j - 1 < frame.cols / 2) { //记录图像左半部分最靠右的车道线的右边缘坐标
|
||
left = j - 1;
|
||
}
|
||
flg = false;
|
||
}
|
||
}
|
||
if (min_y == -1 && (left != -1 || right != -1)) {
|
||
min_y = i;
|
||
}
|
||
if (left != -1){
|
||
points_L.push_back(Point2f(left, i));
|
||
}
|
||
if (right != -1){
|
||
points_R.push_back(Point2f(right, i));
|
||
}
|
||
//若左右参考车道线均存在,计算并标记中心点
|
||
if (left > -1 && right > -1) {
|
||
int mid = (left + right) / 2;
|
||
for (int k = -5; k <= 5; k++) {
|
||
outimg.at<Vec3b>(i, mid+k)[0] = 0;
|
||
outimg.at<Vec3b>(i, mid+k)[1] = 0;
|
||
outimg.at<Vec3b>(i, mid+k)[2] = 255;
|
||
}
|
||
}
|
||
//(需要考虑的问题 1.双车道3条线 2.拐角处曲线 3.近处显示不全 4.两条线粘连)
|
||
}
|
||
//备选方案,对左右车道线分别拟合直线并计算中心线解析式 泛化 鲁棒 (目前有bug
|
||
if (points_L.size() && points_R.size()) {
|
||
Vec4f line_L, line_R;
|
||
float kL, bL, kR, bR, kM, bM; // x=ky+b
|
||
fitLine(points_L, line_L, DIST_WELSCH, 0, 0.01, 0.01);
|
||
fitLine(points_R, line_R, DIST_WELSCH, 0, 0.01, 0.01);
|
||
kL = line_L[0] / line_L[1];
|
||
bL = line_L[2] - kL * line_L[3];
|
||
kR = line_R[0] / line_R[1];
|
||
bR = line_R[2] - kR * line_R[3];
|
||
kM = (kL + kR) / 2;
|
||
bM = (bL + bR) / 2;
|
||
for (int i = min_y; i < frame.rows; i++) {
|
||
int mid = round(kM * i + bM);
|
||
for (int k = -5; k <= 5; k++) {
|
||
outimg.at<Vec3b>(i, mid+k)[0] = 255;
|
||
outimg.at<Vec3b>(i, mid+k)[1] = 0;
|
||
outimg.at<Vec3b>(i, mid+k)[2] = 255;
|
||
}
|
||
}
|
||
}
|
||
|
||
return outimg;
|
||
}
|