init
This commit is contained in:
160
ym-common/src/main/java/com/cnbm/common/utils/CountUtils.java
Normal file
160
ym-common/src/main/java/com/cnbm/common/utils/CountUtils.java
Normal file
@@ -0,0 +1,160 @@
|
||||
package com.cnbm.common.utils;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
import java.math.BigInteger;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import static java.math.BigDecimal.ROUND_HALF_UP;
|
||||
|
||||
public class CountUtils {
|
||||
|
||||
// private static final BigDecimal TWO = BigDecimal.valueOf(2);
|
||||
//
|
||||
// public static BigDecimal Mean(List<BigDecimal> data){
|
||||
// BigDecimal sum = new BigDecimal("0");
|
||||
// for (BigDecimal datum : data) {
|
||||
// sum = sum.add(datum);
|
||||
// }
|
||||
// BigDecimal divide = sum.divide(BigDecimal.valueOf(data.size()));
|
||||
// return divide;
|
||||
// }
|
||||
//
|
||||
// // population variance 总体方差
|
||||
// public static BigDecimal POP_Variance(List<BigDecimal> data) {
|
||||
// BigDecimal variance = new BigDecimal("0");
|
||||
// for (BigDecimal datum : data) {
|
||||
// variance = variance.add(datum.subtract(Mean(data)).pow(2));
|
||||
// }
|
||||
// variance = variance.divide(BigDecimal.valueOf(data.size()));
|
||||
// return variance;
|
||||
// }
|
||||
//
|
||||
// // population standard deviation 总体标准差
|
||||
// public static BigDecimal POP_STD_dev(List<BigDecimal> data) {
|
||||
// BigDecimal sqrt = sqrt(POP_Variance(data), 4);
|
||||
// return sqrt;
|
||||
// }
|
||||
//
|
||||
// //sample variance 样本方差
|
||||
// public static BigDecimal Sample_Variance(List<BigDecimal> data) {
|
||||
// BigDecimal variance = new BigDecimal("0");
|
||||
// for (BigDecimal datum : data) {
|
||||
// variance = variance.add(datum.subtract(Mean(data)).pow(2));
|
||||
// }
|
||||
// variance = variance.divide(BigDecimal.valueOf(data.size() - 1),4);
|
||||
// return variance;
|
||||
// }
|
||||
//
|
||||
// // sample standard deviation 样本标准差
|
||||
// public static BigDecimal Sample_STD_dev(List<BigDecimal> data) {
|
||||
// BigDecimal sqrt = sqrt(Sample_Variance(data), 4);
|
||||
// return sqrt;
|
||||
// }
|
||||
//
|
||||
// public static BigDecimal sqrt(BigDecimal A, final int SCALE) {
|
||||
// BigDecimal x0 = new BigDecimal("0");
|
||||
// BigDecimal x1 = new BigDecimal(Math.sqrt(A.doubleValue()));
|
||||
// while (!x0.equals(x1)) {
|
||||
// x0 = x1;
|
||||
// x1 = A.divide(x0, SCALE, ROUND_HALF_UP);
|
||||
// x1 = x1.add(x0);
|
||||
// x1 = x1.divide(TWO, SCALE, ROUND_HALF_UP);
|
||||
//
|
||||
// }
|
||||
// return x1;
|
||||
// }
|
||||
|
||||
|
||||
double Sum(double[] data) {
|
||||
double sum = 0;
|
||||
for (int i = 0; i < data.length; i++)
|
||||
sum = sum + data[i];
|
||||
return sum;
|
||||
}
|
||||
|
||||
double Mean(double[] data) {
|
||||
double mean = 0;
|
||||
mean = Sum(data) / data.length;
|
||||
return mean;
|
||||
}
|
||||
|
||||
// population variance 总体方差
|
||||
double POP_Variance(double[] data) {
|
||||
double variance = 0;
|
||||
for (int i = 0; i < data.length; i++) {
|
||||
variance = variance + (Math.pow((data[i] - Mean(data)), 2));
|
||||
}
|
||||
variance = variance / data.length;
|
||||
return variance;
|
||||
}
|
||||
|
||||
// population standard deviation 总体标准差
|
||||
double POP_STD_dev(double[] data) {
|
||||
double std_dev;
|
||||
std_dev = Math.sqrt(POP_Variance(data));
|
||||
return std_dev;
|
||||
}
|
||||
|
||||
//sample variance 样本方差
|
||||
double Sample_Variance(double[] data) {
|
||||
double variance = 0;
|
||||
for (int i = 0; i < data.length; i++) {
|
||||
variance = variance + (Math.pow((data[i] - Mean(data)), 2));
|
||||
}
|
||||
variance = variance / (data.length-1);
|
||||
return variance;
|
||||
}
|
||||
|
||||
// sample standard deviation 样本标准差
|
||||
double Sample_STD_dev(double[] data) {
|
||||
double std_dev;
|
||||
std_dev = Math.sqrt(Sample_Variance(data));
|
||||
return std_dev;
|
||||
}
|
||||
|
||||
|
||||
|
||||
public static void main(String[] args) {
|
||||
// List<BigDecimal> data = new ArrayList<>();
|
||||
//
|
||||
// data.add(new BigDecimal("10.023"));
|
||||
// data.add(new BigDecimal("11.02"));
|
||||
// data.add(new BigDecimal("9.99"));
|
||||
// data.add(new BigDecimal("9.81"));
|
||||
// data.add(new BigDecimal("10.12"));
|
||||
// data.add(new BigDecimal("10.9"));
|
||||
// data.add(new BigDecimal("9.99"));
|
||||
// data.add(new BigDecimal("10.03"));
|
||||
// data.add(new BigDecimal("9.99"));
|
||||
// data.add(new BigDecimal("12.02"));
|
||||
// CountUtils countUtils = new CountUtils();
|
||||
//
|
||||
// BigDecimal mean = countUtils.Mean(data);
|
||||
// System.out.println(mean.toString());
|
||||
//
|
||||
//
|
||||
// BigDecimal bigDecimal1 = POP_STD_dev(data);
|
||||
// System.out.println(bigDecimal1.toString());
|
||||
//
|
||||
// System.out.println(Sample_STD_dev(data).toString());
|
||||
//
|
||||
// BigDecimal bigDecimal = POP_Variance(data);
|
||||
// System.out.println(bigDecimal.toString());
|
||||
//
|
||||
//
|
||||
// System.out.println(Sample_Variance(data));
|
||||
|
||||
double[] data = new double[]{10.023,11.02,9.99,9.81,10.12,10.9,9.99,10.03,9.99,12.02};
|
||||
CountUtils countUtils = new CountUtils();
|
||||
|
||||
System.out.println(countUtils.Mean(data));
|
||||
System.out.println(countUtils.POP_STD_dev(data));
|
||||
System.out.println(countUtils.Sample_STD_dev(data));
|
||||
|
||||
System.out.println(countUtils.POP_Variance(data));
|
||||
System.out.println(countUtils.Sample_Variance(data));
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
@@ -0,0 +1,90 @@
|
||||
package com.cnbm.common.utils;
|
||||
|
||||
public class LeastSquares
|
||||
{
|
||||
|
||||
/*
|
||||
* 杜航 功能:返回估计的y值
|
||||
*/
|
||||
public static float estimate(float[] x, float[] y, float input)
|
||||
{
|
||||
float a = getA(x, y);
|
||||
float b = getB(x, y);
|
||||
System.out.println("线性回归系数a值:\t" + a + "\n" + "线性回归系数b值:\t" + b);
|
||||
return (a * input + b);
|
||||
}
|
||||
|
||||
/*
|
||||
* 杜航 功能:返回x的系数a 公式:a = ( n sum( xy ) - sum( x ) sum( y ) ) / ( n sum( x^2 )
|
||||
* - sum(x) ^ 2 )
|
||||
*/
|
||||
public static float getA(float[] x, float[] y)
|
||||
{
|
||||
int n = x.length;
|
||||
return (float) ((n * pSum(x, y) - sum(x) * sum(y)) / (n * sqSum(x) - Math
|
||||
.pow(sum(x), 2)));
|
||||
}
|
||||
|
||||
/*
|
||||
* 杜航 功能:返回常量系数系数b 公式:b = sum( y ) / n - a sum( x ) / n
|
||||
*/
|
||||
public static float getB(float[] x, float[] y)
|
||||
{
|
||||
int n = x.length;
|
||||
float a = getA(x, y);
|
||||
return sum(y) / n - a * sum(x) / n;
|
||||
}
|
||||
|
||||
/*
|
||||
* 杜航 功能:求和
|
||||
*/
|
||||
private static float sum(float[] ds)
|
||||
{
|
||||
float s = 0;
|
||||
for (float d : ds)
|
||||
{
|
||||
s = s + d;
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
/*
|
||||
* 杜航 功能:求平方和
|
||||
*/
|
||||
private static float sqSum(float[] ds)
|
||||
{
|
||||
float s = 0;
|
||||
for (float d : ds)
|
||||
{
|
||||
s = (float) (s + Math.pow(d, 2));
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
/*
|
||||
* 杜航 功能:返回对应项相乘后的和
|
||||
*/
|
||||
private static float pSum(float[] x, float[] y)
|
||||
{
|
||||
float s = 0;
|
||||
for (int i = 0; i < x.length; i++)
|
||||
{
|
||||
s = s + x[i] * y[i];
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
/*
|
||||
* 杜航 功能:main()测试线性回归的最小二乘法java实现函数
|
||||
*/
|
||||
public static void main(String[] args)
|
||||
{
|
||||
float[] x =
|
||||
// { 540, 360, 240, 480, 420 };
|
||||
{ 0.501F, 0.482F, 0.482F, 0.51F, 0.492F, 0.54F, 0.5F, 0.492F, 0.51F, 0.489F};
|
||||
float[] y =
|
||||
// { 520, 475, 430, 386, 500 };
|
||||
{10.023F, 11.02F, 9.99F, 9.81F, 10.12F,10.9F, 9.99F, 10.03F, 9.99F, 12.02F };
|
||||
System.out.println("经线性回归后的y值:\t" + estimate(x, y,240));
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user