添加项目文件。
This commit is contained in:
48
3rdparty/opencv/inc/opencv2/bioinspired/bioinspired.hpp
vendored
Normal file
48
3rdparty/opencv/inc/opencv2/bioinspired/bioinspired.hpp
vendored
Normal file
@@ -0,0 +1,48 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef __OPENCV_BUILD
|
||||
#error this is a compatibility header which should not be used inside the OpenCV library
|
||||
#endif
|
||||
|
||||
#include "opencv2/bioinspired.hpp"
|
||||
454
3rdparty/opencv/inc/opencv2/bioinspired/retina.hpp
vendored
Normal file
454
3rdparty/opencv/inc/opencv2/bioinspired/retina.hpp
vendored
Normal file
@@ -0,0 +1,454 @@
|
||||
/*#******************************************************************************
|
||||
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
**
|
||||
** By downloading, copying, installing or using the software you agree to this license.
|
||||
** If you do not agree to this license, do not download, install,
|
||||
** copy or use the software.
|
||||
**
|
||||
**
|
||||
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
|
||||
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
|
||||
**
|
||||
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
|
||||
**
|
||||
** Creation - enhancement process 2007-2015
|
||||
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
|
||||
**
|
||||
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
|
||||
** Refer to the following research paper for more information:
|
||||
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
||||
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
|
||||
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
||||
**
|
||||
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
|
||||
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
|
||||
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
|
||||
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
|
||||
** ====> more informations in the above cited Jeanny Heraults's book.
|
||||
**
|
||||
** License Agreement
|
||||
** For Open Source Computer Vision Library
|
||||
**
|
||||
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
||||
**
|
||||
** For Human Visual System tools (bioinspired)
|
||||
** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
|
||||
**
|
||||
** Third party copyrights are property of their respective owners.
|
||||
**
|
||||
** Redistribution and use in source and binary forms, with or without modification,
|
||||
** are permitted provided that the following conditions are met:
|
||||
**
|
||||
** * Redistributions of source code must retain the above copyright notice,
|
||||
** this list of conditions and the following disclaimer.
|
||||
**
|
||||
** * Redistributions in binary form must reproduce the above copyright notice,
|
||||
** this list of conditions and the following disclaimer in the documentation
|
||||
** and/or other materials provided with the distribution.
|
||||
**
|
||||
** * The name of the copyright holders may not be used to endorse or promote products
|
||||
** derived from this software without specific prior written permission.
|
||||
**
|
||||
** This software is provided by the copyright holders and contributors "as is" and
|
||||
** any express or implied warranties, including, but not limited to, the implied
|
||||
** warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
** In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
** indirect, incidental, special, exemplary, or consequential damages
|
||||
** (including, but not limited to, procurement of substitute goods or services;
|
||||
** loss of use, data, or profits; or business interruption) however caused
|
||||
** and on any theory of liability, whether in contract, strict liability,
|
||||
** or tort (including negligence or otherwise) arising in any way out of
|
||||
** the use of this software, even if advised of the possibility of such damage.
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef __OPENCV_BIOINSPIRED_RETINA_HPP__
|
||||
#define __OPENCV_BIOINSPIRED_RETINA_HPP__
|
||||
|
||||
/**
|
||||
@file
|
||||
@date Jul 19, 2011
|
||||
@author Alexandre Benoit
|
||||
*/
|
||||
|
||||
#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
|
||||
|
||||
|
||||
namespace cv{
|
||||
namespace bioinspired{
|
||||
|
||||
//! @addtogroup bioinspired
|
||||
//! @{
|
||||
|
||||
enum {
|
||||
RETINA_COLOR_RANDOM, //!< each pixel position is either R, G or B in a random choice
|
||||
RETINA_COLOR_DIAGONAL,//!< color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
|
||||
RETINA_COLOR_BAYER//!< standard bayer sampling
|
||||
};
|
||||
|
||||
|
||||
/** @brief retina model parameters structure
|
||||
|
||||
For better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel
|
||||
|
||||
Here is the default configuration file of the retina module. It gives results such as the first
|
||||
retina output shown on the top of this page.
|
||||
|
||||
@code{xml}
|
||||
<?xml version="1.0"?>
|
||||
<opencv_storage>
|
||||
<OPLandIPLparvo>
|
||||
<colorMode>1</colorMode>
|
||||
<normaliseOutput>1</normaliseOutput>
|
||||
<photoreceptorsLocalAdaptationSensitivity>7.5e-01</photoreceptorsLocalAdaptationSensitivity>
|
||||
<photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
|
||||
<photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
|
||||
<horizontalCellsGain>0.01</horizontalCellsGain>
|
||||
<hcellsTemporalConstant>0.5</hcellsTemporalConstant>
|
||||
<hcellsSpatialConstant>7.</hcellsSpatialConstant>
|
||||
<ganglionCellsSensitivity>7.5e-01</ganglionCellsSensitivity></OPLandIPLparvo>
|
||||
<IPLmagno>
|
||||
<normaliseOutput>1</normaliseOutput>
|
||||
<parasolCells_beta>0.</parasolCells_beta>
|
||||
<parasolCells_tau>0.</parasolCells_tau>
|
||||
<parasolCells_k>7.</parasolCells_k>
|
||||
<amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
|
||||
<V0CompressionParameter>9.5e-01</V0CompressionParameter>
|
||||
<localAdaptintegration_tau>0.</localAdaptintegration_tau>
|
||||
<localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
|
||||
</opencv_storage>
|
||||
@endcode
|
||||
|
||||
Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page.
|
||||
|
||||
@code{xml}
|
||||
<?xml version="1.0"?>
|
||||
<opencv_storage>
|
||||
<OPLandIPLparvo>
|
||||
<colorMode>1</colorMode>
|
||||
<normaliseOutput>1</normaliseOutput>
|
||||
<photoreceptorsLocalAdaptationSensitivity>8.9e-01</photoreceptorsLocalAdaptationSensitivity>
|
||||
<photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
|
||||
<photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
|
||||
<horizontalCellsGain>0.3</horizontalCellsGain>
|
||||
<hcellsTemporalConstant>0.5</hcellsTemporalConstant>
|
||||
<hcellsSpatialConstant>7.</hcellsSpatialConstant>
|
||||
<ganglionCellsSensitivity>8.9e-01</ganglionCellsSensitivity></OPLandIPLparvo>
|
||||
<IPLmagno>
|
||||
<normaliseOutput>1</normaliseOutput>
|
||||
<parasolCells_beta>0.</parasolCells_beta>
|
||||
<parasolCells_tau>0.</parasolCells_tau>
|
||||
<parasolCells_k>7.</parasolCells_k>
|
||||
<amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
|
||||
<V0CompressionParameter>9.5e-01</V0CompressionParameter>
|
||||
<localAdaptintegration_tau>0.</localAdaptintegration_tau>
|
||||
<localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
|
||||
</opencv_storage>
|
||||
@endcode
|
||||
*/
|
||||
struct RetinaParameters{
|
||||
//! Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters
|
||||
struct OPLandIplParvoParameters{
|
||||
OPLandIplParvoParameters():colorMode(true),
|
||||
normaliseOutput(true),
|
||||
photoreceptorsLocalAdaptationSensitivity(0.75f),
|
||||
photoreceptorsTemporalConstant(0.9f),
|
||||
photoreceptorsSpatialConstant(0.53f),
|
||||
horizontalCellsGain(0.01f),
|
||||
hcellsTemporalConstant(0.5f),
|
||||
hcellsSpatialConstant(7.f),
|
||||
ganglionCellsSensitivity(0.75f) { } // default setup
|
||||
bool colorMode, normaliseOutput;
|
||||
float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity;
|
||||
};
|
||||
//! Inner Plexiform Layer Magnocellular channel (IplMagno)
|
||||
struct IplMagnoParameters{
|
||||
IplMagnoParameters():
|
||||
normaliseOutput(true),
|
||||
parasolCells_beta(0.f),
|
||||
parasolCells_tau(0.f),
|
||||
parasolCells_k(7.f),
|
||||
amacrinCellsTemporalCutFrequency(2.0f),
|
||||
V0CompressionParameter(0.95f),
|
||||
localAdaptintegration_tau(0.f),
|
||||
localAdaptintegration_k(7.f) { } // default setup
|
||||
bool normaliseOutput;
|
||||
float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k;
|
||||
};
|
||||
OPLandIplParvoParameters OPLandIplParvo;
|
||||
IplMagnoParameters IplMagno;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/** @brief class which allows the Gipsa/Listic Labs model to be used with OpenCV.
|
||||
|
||||
This retina model allows spatio-temporal image processing (applied on still images, video sequences).
|
||||
As a summary, these are the retina model properties:
|
||||
- It applies a spectral whithening (mid-frequency details enhancement)
|
||||
- high frequency spatio-temporal noise reduction
|
||||
- low frequency luminance to be reduced (luminance range compression)
|
||||
- local logarithmic luminance compression allows details to be enhanced in low light conditions
|
||||
|
||||
USE : this model can be used basically for spatio-temporal video effects but also for :
|
||||
_using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
|
||||
_using the getMagno method output matrix : motion analysis also with the previously cited properties
|
||||
|
||||
for more information, reer to the following papers :
|
||||
Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
||||
Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
||||
|
||||
The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
|
||||
take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
|
||||
B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
|
||||
take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
|
||||
more informations in the above cited Jeanny Heraults's book.
|
||||
*/
|
||||
class CV_EXPORTS_W Retina : public Algorithm {
|
||||
|
||||
public:
|
||||
|
||||
|
||||
/** @brief Retreive retina input buffer size
|
||||
@return the retina input buffer size
|
||||
*/
|
||||
CV_WRAP virtual Size getInputSize()=0;
|
||||
|
||||
/** @brief Retreive retina output buffer size that can be different from the input if a spatial log
|
||||
transformation is applied
|
||||
@return the retina output buffer size
|
||||
*/
|
||||
CV_WRAP virtual Size getOutputSize()=0;
|
||||
|
||||
/** @brief Try to open an XML retina parameters file to adjust current retina instance setup
|
||||
|
||||
- if the xml file does not exist, then default setup is applied
|
||||
- warning, Exceptions are thrown if read XML file is not valid
|
||||
@param retinaParameterFile the parameters filename
|
||||
@param applyDefaultSetupOnFailure set to true if an error must be thrown on error
|
||||
|
||||
You can retrieve the current parameters structure using the method Retina::getParameters and update
|
||||
it before running method Retina::setup.
|
||||
*/
|
||||
CV_WRAP virtual void setup(String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true)=0;
|
||||
|
||||
/** @overload
|
||||
@param fs the open Filestorage which contains retina parameters
|
||||
@param applyDefaultSetupOnFailure set to true if an error must be thrown on error
|
||||
*/
|
||||
virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
|
||||
|
||||
/** @overload
|
||||
@param newParameters a parameters structures updated with the new target configuration.
|
||||
*/
|
||||
virtual void setup(RetinaParameters newParameters)=0;
|
||||
|
||||
/**
|
||||
@return the current parameters setup
|
||||
*/
|
||||
virtual RetinaParameters getParameters()=0;
|
||||
|
||||
/** @brief Outputs a string showing the used parameters setup
|
||||
@return a string which contains formated parameters information
|
||||
*/
|
||||
CV_WRAP virtual const String printSetup()=0;
|
||||
|
||||
/** @brief Write xml/yml formated parameters information
|
||||
@param fs the filename of the xml file that will be open and writen with formatted parameters
|
||||
information
|
||||
*/
|
||||
CV_WRAP virtual void write( String fs ) const=0;
|
||||
|
||||
/** @overload */
|
||||
virtual void write( FileStorage& fs ) const CV_OVERRIDE = 0;
|
||||
|
||||
/** @brief Setup the OPL and IPL parvo channels (see biologocal model)
|
||||
|
||||
OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
|
||||
which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
|
||||
(low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
|
||||
Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
|
||||
reference papers for more informations.
|
||||
for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
||||
@param colorMode specifies if (true) color is processed of not (false) to then processing gray
|
||||
level image
|
||||
@param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
||||
@param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
|
||||
(more log compression effect when value increases)
|
||||
@param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
|
||||
the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
|
||||
frames, typical value is 1 frame
|
||||
@param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
|
||||
the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
|
||||
pixels, typical value is 1 pixel
|
||||
@param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
|
||||
the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
|
||||
still reachable at the output, typicall value is 0
|
||||
@param HcellsTemporalConstant the time constant of the first order low pass filter of the
|
||||
horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
|
||||
frames, typical value is 1 frame, as the photoreceptors
|
||||
@param HcellsSpatialConstant the spatial constant of the first order low pass filter of the
|
||||
horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
|
||||
typical value is 5 pixel, this value is also used for local contrast computing when computing
|
||||
the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
|
||||
channel model)
|
||||
@param ganglionCellsSensitivity the compression strengh of the ganglion cells local adaptation
|
||||
output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
||||
value sensitivity... and the output saturates faster, recommended value: 0.7
|
||||
*/
|
||||
CV_WRAP virtual void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7f, const float photoreceptorsTemporalConstant=0.5f, const float photoreceptorsSpatialConstant=0.53f, const float horizontalCellsGain=0.f, const float HcellsTemporalConstant=1.f, const float HcellsSpatialConstant=7.f, const float ganglionCellsSensitivity=0.7f)=0;
|
||||
|
||||
/** @brief Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
|
||||
|
||||
this channel processes signals output from OPL processing stage in peripheral vision, it allows
|
||||
motion information enhancement. It is decorrelated from the details channel. See reference
|
||||
papers for more details.
|
||||
|
||||
@param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
|
||||
@param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
|
||||
IPL level of the retina (for ganglion cells local adaptation), typical value is 0
|
||||
@param parasolCells_tau the low pass filter time constant used for local contrast adaptation
|
||||
at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
|
||||
value is 0 (immediate response)
|
||||
@param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
|
||||
at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
|
||||
value is 5
|
||||
@param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
|
||||
the magnocellular way (motion information channel), unit is frames, typical value is 1.2
|
||||
@param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
|
||||
output, set a value between 0.6 and 1 for best results, a high value increases more the low
|
||||
value sensitivity... and the output saturates faster, recommended value: 0.95
|
||||
@param localAdaptintegration_tau specifies the temporal constant of the low pas filter
|
||||
involved in the computation of the local "motion mean" for the local adaptation computation
|
||||
@param localAdaptintegration_k specifies the spatial constant of the low pas filter involved
|
||||
in the computation of the local "motion mean" for the local adaptation computation
|
||||
*/
|
||||
CV_WRAP virtual void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0.f, const float parasolCells_tau=0.f, const float parasolCells_k=7.f, const float amacrinCellsTemporalCutFrequency=1.2f, const float V0CompressionParameter=0.95f, const float localAdaptintegration_tau=0.f, const float localAdaptintegration_k=7.f)=0;
|
||||
|
||||
/** @brief Method which allows retina to be applied on an input image,
|
||||
|
||||
after run, encapsulated retina module is ready to deliver its outputs using dedicated
|
||||
acccessors, see getParvo and getMagno methods
|
||||
@param inputImage the input Mat image to be processed, can be gray level or BGR coded in any
|
||||
format (from 8bit to 16bits)
|
||||
*/
|
||||
CV_WRAP virtual void run(InputArray inputImage)=0;
|
||||
|
||||
/** @brief Method which processes an image in the aim to correct its luminance correct
|
||||
backlight problems, enhance details in shadows.
|
||||
|
||||
This method is designed to perform High Dynamic Range image tone mapping (compress \>8bit/pixel
|
||||
images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
|
||||
(simplified version of the run/getParvo methods call) since it does not include the
|
||||
spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
|
||||
whitening and many other stuff. However, it works great for tone mapping and in a faster way.
|
||||
|
||||
Check the demos and experiments section to see examples and the way to perform tone mapping
|
||||
using the original retina model and the method.
|
||||
|
||||
@param inputImage the input image to process (should be coded in float format : CV_32F,
|
||||
CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).
|
||||
@param outputToneMappedImage the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).
|
||||
*/
|
||||
CV_WRAP virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0;
|
||||
|
||||
/** @brief Accessor of the details channel of the retina (models foveal vision).
|
||||
|
||||
Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
|
||||
the non RAW method allows a normalized matrix to be retrieved.
|
||||
|
||||
@param retinaOutput_parvo the output buffer (reallocated if necessary), format can be :
|
||||
- a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
|
||||
- RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
|
||||
B2, ...Bn), this output is the original retina filter model output, without any
|
||||
quantification or rescaling.
|
||||
@see getParvoRAW
|
||||
*/
|
||||
CV_WRAP virtual void getParvo(OutputArray retinaOutput_parvo)=0;
|
||||
|
||||
/** @brief Accessor of the details channel of the retina (models foveal vision).
|
||||
@see getParvo
|
||||
*/
|
||||
CV_WRAP virtual void getParvoRAW(OutputArray retinaOutput_parvo)=0;
|
||||
|
||||
/** @brief Accessor of the motion channel of the retina (models peripheral vision).
|
||||
|
||||
Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
|
||||
the non RAW method allows a normalized matrix to be retrieved.
|
||||
@param retinaOutput_magno the output buffer (reallocated if necessary), format can be :
|
||||
- a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
|
||||
- RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
|
||||
original retina filter model output, without any quantification or rescaling.
|
||||
@see getMagnoRAW
|
||||
*/
|
||||
CV_WRAP virtual void getMagno(OutputArray retinaOutput_magno)=0;
|
||||
|
||||
/** @brief Accessor of the motion channel of the retina (models peripheral vision).
|
||||
@see getMagno
|
||||
*/
|
||||
CV_WRAP virtual void getMagnoRAW(OutputArray retinaOutput_magno)=0;
|
||||
|
||||
/** @overload */
|
||||
CV_WRAP virtual const Mat getMagnoRAW() const=0;
|
||||
/** @overload */
|
||||
CV_WRAP virtual const Mat getParvoRAW() const=0;
|
||||
|
||||
/** @brief Activate color saturation as the final step of the color demultiplexing process -\> this
|
||||
saturation is a sigmoide function applied to each channel of the demultiplexed image.
|
||||
@param saturateColors boolean that activates color saturation (if true) or desactivate (if false)
|
||||
@param colorSaturationValue the saturation factor : a simple factor applied on the chrominance
|
||||
buffers
|
||||
*/
|
||||
CV_WRAP virtual void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0f)=0;
|
||||
|
||||
/** @brief Clears all retina buffers
|
||||
|
||||
(equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal
|
||||
transition occuring just after this method call.
|
||||
*/
|
||||
CV_WRAP virtual void clearBuffers()=0;
|
||||
|
||||
/** @brief Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
|
||||
default, it is activated
|
||||
@param activate true if Magnocellular output should be activated, false if not... if activated,
|
||||
the Magnocellular output can be retrieved using the **getMagno** methods
|
||||
*/
|
||||
CV_WRAP virtual void activateMovingContoursProcessing(const bool activate)=0;
|
||||
|
||||
/** @brief Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
|
||||
default, it is activated
|
||||
@param activate true if Parvocellular (contours information extraction) output should be
|
||||
activated, false if not... if activated, the Parvocellular output can be retrieved using the
|
||||
Retina::getParvo methods
|
||||
*/
|
||||
CV_WRAP virtual void activateContoursProcessing(const bool activate)=0;
|
||||
|
||||
/** @overload */
|
||||
CV_WRAP static Ptr<Retina> create(Size inputSize);
|
||||
/** @brief Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
|
||||
|
||||
@param inputSize the input frame size
|
||||
@param colorMode the chosen processing mode : with or without color processing
|
||||
@param colorSamplingMethod specifies which kind of color sampling will be used :
|
||||
- cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
|
||||
- cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
|
||||
- cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
|
||||
@param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
|
||||
be used
|
||||
@param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction
|
||||
factor of the output frame (as the center (fovea) is high resolution and corners can be
|
||||
underscaled, then a reduction of the output is allowed without precision leak
|
||||
@param samplingStrength only usefull if param useRetinaLogSampling=true, specifies the strength of
|
||||
the log scale that is applied
|
||||
*/
|
||||
CV_WRAP static Ptr<Retina> create(Size inputSize, const bool colorMode,
|
||||
int colorSamplingMethod=RETINA_COLOR_BAYER,
|
||||
const bool useRetinaLogSampling=false,
|
||||
const float reductionFactor=1.0f, const float samplingStrength=10.0f);
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
||||
}
|
||||
}
|
||||
#endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */
|
||||
138
3rdparty/opencv/inc/opencv2/bioinspired/retinafasttonemapping.hpp
vendored
Normal file
138
3rdparty/opencv/inc/opencv2/bioinspired/retinafasttonemapping.hpp
vendored
Normal file
@@ -0,0 +1,138 @@
|
||||
|
||||
/*#******************************************************************************
|
||||
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
**
|
||||
** By downloading, copying, installing or using the software you agree to this license.
|
||||
** If you do not agree to this license, do not download, install,
|
||||
** copy or use the software.
|
||||
**
|
||||
**
|
||||
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
|
||||
**
|
||||
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
|
||||
**
|
||||
** Creation - enhancement process 2007-2013
|
||||
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
|
||||
**
|
||||
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
|
||||
** Refer to the following research paper for more information:
|
||||
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
||||
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
|
||||
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
||||
**
|
||||
**
|
||||
**
|
||||
**
|
||||
**
|
||||
** This class is based on image processing tools of the author and already used within the Retina class (this is the same code as method retina::applyFastToneMapping, but in an independent class, it is ligth from a memory requirement point of view). It implements an adaptation of the efficient tone mapping algorithm propose by David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite:
|
||||
** -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
|
||||
**
|
||||
**
|
||||
** License Agreement
|
||||
** For Open Source Computer Vision Library
|
||||
**
|
||||
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
||||
**
|
||||
** For Human Visual System tools (bioinspired)
|
||||
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
|
||||
**
|
||||
** Third party copyrights are property of their respective owners.
|
||||
**
|
||||
** Redistribution and use in source and binary forms, with or without modification,
|
||||
** are permitted provided that the following conditions are met:
|
||||
**
|
||||
** * Redistributions of source code must retain the above copyright notice,
|
||||
** this list of conditions and the following disclaimer.
|
||||
**
|
||||
** * Redistributions in binary form must reproduce the above copyright notice,
|
||||
** this list of conditions and the following disclaimer in the documentation
|
||||
** and/or other materials provided with the distribution.
|
||||
**
|
||||
** * The name of the copyright holders may not be used to endorse or promote products
|
||||
** derived from this software without specific prior written permission.
|
||||
**
|
||||
** This software is provided by the copyright holders and contributors "as is" and
|
||||
** any express or implied warranties, including, but not limited to, the implied
|
||||
** warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
** In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
** indirect, incidental, special, exemplary, or consequential damages
|
||||
** (including, but not limited to, procurement of substitute goods or services;
|
||||
** loss of use, data, or profits; or business interruption) however caused
|
||||
** and on any theory of liability, whether in contract, strict liability,
|
||||
** or tort (including negligence or otherwise) arising in any way out of
|
||||
** the use of this software, even if advised of the possibility of such damage.
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__
|
||||
#define __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__
|
||||
|
||||
/**
|
||||
@file
|
||||
@date May 26, 2013
|
||||
@author Alexandre Benoit
|
||||
*/
|
||||
|
||||
#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
|
||||
|
||||
namespace cv{
|
||||
namespace bioinspired{
|
||||
|
||||
//! @addtogroup bioinspired
|
||||
//! @{
|
||||
|
||||
/** @brief a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV.
|
||||
|
||||
This algorithm is already implemented in thre Retina class (retina::applyFastToneMapping) but used it does not require all the retina model to be allocated. This allows a light memory use for low memory devices (smartphones, etc.
|
||||
As a summary, these are the model properties:
|
||||
- 2 stages of local luminance adaptation with a different local neighborhood for each.
|
||||
- first stage models the retina photorecetors local luminance adaptation
|
||||
- second stage models th ganglion cells local information adaptation
|
||||
- compared to the initial publication, this class uses spatio-temporal low pass filters instead of spatial only filters.
|
||||
this can help noise robustness and temporal stability for video sequence use cases.
|
||||
|
||||
for more information, read to the following papers :
|
||||
Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
||||
regarding spatio-temporal filter and the bigger retina model :
|
||||
Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
||||
*/
|
||||
class CV_EXPORTS_W RetinaFastToneMapping : public Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
/** @brief applies a luminance correction (initially High Dynamic Range (HDR) tone mapping)
|
||||
|
||||
using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors
|
||||
level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal
|
||||
smoothing and eventually high frequencies attenuation. This is a lighter method than the one
|
||||
available using the regular retina::run method. It is then faster but it does not include
|
||||
complete temporal filtering nor retina spectral whitening. Then, it can have a more limited
|
||||
effect on images with a very high dynamic range. This is an adptation of the original still
|
||||
image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's
|
||||
work, please cite: -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local
|
||||
Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of
|
||||
America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
|
||||
|
||||
@param inputImage the input image to process RGB or gray levels
|
||||
@param outputToneMappedImage the output tone mapped image
|
||||
*/
|
||||
CV_WRAP virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0;
|
||||
|
||||
/** @brief updates tone mapping behaviors by adjusing the local luminance computation area
|
||||
|
||||
@param photoreceptorsNeighborhoodRadius the first stage local adaptation area
|
||||
@param ganglioncellsNeighborhoodRadius the second stage local adaptation area
|
||||
@param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information
|
||||
(default is 1, see reference paper)
|
||||
*/
|
||||
CV_WRAP virtual void setup(const float photoreceptorsNeighborhoodRadius=3.f, const float ganglioncellsNeighborhoodRadius=1.f, const float meanLuminanceModulatorK=1.f)=0;
|
||||
|
||||
CV_WRAP static Ptr<RetinaFastToneMapping> create(Size inputSize);
|
||||
};
|
||||
|
||||
|
||||
//! @}
|
||||
|
||||
}
|
||||
}
|
||||
#endif /* __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__ */
|
||||
204
3rdparty/opencv/inc/opencv2/bioinspired/transientareassegmentationmodule.hpp
vendored
Normal file
204
3rdparty/opencv/inc/opencv2/bioinspired/transientareassegmentationmodule.hpp
vendored
Normal file
@@ -0,0 +1,204 @@
|
||||
/*#******************************************************************************
|
||||
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
**
|
||||
** By downloading, copying, installing or using the software you agree to this license.
|
||||
** If you do not agree to this license, do not download, install,
|
||||
** copy or use the software.
|
||||
**
|
||||
**
|
||||
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models.
|
||||
** TransientAreasSegmentationModule Use: extract areas that present spatio-temporal changes.
|
||||
** => It should be used at the output of the cv::bioinspired::Retina::getMagnoRAW() output that enhances spatio-temporal changes
|
||||
**
|
||||
** Maintainers : Listic lab (code author current affiliation & applications)
|
||||
**
|
||||
** Creation - enhancement process 2007-2015
|
||||
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
|
||||
**
|
||||
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
|
||||
** Refer to the following research paper for more information:
|
||||
** Strat, S.T.; Benoit, A.; Lambert, P., "Retina enhanced bag of words descriptors for video classification," Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1307,1311, 1-5 Sept. 2014 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6952461&isnumber=6951911)
|
||||
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
||||
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
|
||||
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
||||
**
|
||||
**
|
||||
** License Agreement
|
||||
** For Open Source Computer Vision Library
|
||||
**
|
||||
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
||||
**
|
||||
** For Human Visual System tools (bioinspired)
|
||||
** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
|
||||
**
|
||||
** Third party copyrights are property of their respective owners.
|
||||
**
|
||||
** Redistribution and use in source and binary forms, with or without modification,
|
||||
** are permitted provided that the following conditions are met:
|
||||
**
|
||||
** * Redistributions of source code must retain the above copyright notice,
|
||||
** this list of conditions and the following disclaimer.
|
||||
**
|
||||
** * Redistributions in binary form must reproduce the above copyright notice,
|
||||
** this list of conditions and the following disclaimer in the documentation
|
||||
** and/or other materials provided with the distribution.
|
||||
**
|
||||
** * The name of the copyright holders may not be used to endorse or promote products
|
||||
** derived from this software without specific prior written permission.
|
||||
**
|
||||
** This software is provided by the copyright holders and contributors "as is" and
|
||||
** any express or implied warranties, including, but not limited to, the implied
|
||||
** warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
** In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
** indirect, incidental, special, exemplary, or consequential damages
|
||||
** (including, but not limited to, procurement of substitute goods or services;
|
||||
** loss of use, data, or profits; or business interruption) however caused
|
||||
** and on any theory of liability, whether in contract, strict liability,
|
||||
** or tort (including negligence or otherwise) arising in any way out of
|
||||
** the use of this software, even if advised of the possibility of such damage.
|
||||
*******************************************************************************/
|
||||
|
||||
#ifndef SEGMENTATIONMODULE_HPP_
|
||||
#define SEGMENTATIONMODULE_HPP_
|
||||
|
||||
/**
|
||||
@file
|
||||
@date 2007-2013
|
||||
@author Alexandre BENOIT, benoit.alexandre.vision@gmail.com
|
||||
*/
|
||||
|
||||
#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace bioinspired
|
||||
{
|
||||
//! @addtogroup bioinspired
|
||||
//! @{
|
||||
|
||||
/** @brief parameter structure that stores the transient events detector setup parameters
|
||||
*/
|
||||
struct SegmentationParameters{ // CV_EXPORTS_W_MAP to export to python native dictionnaries
|
||||
// default structure instance construction with default values
|
||||
SegmentationParameters():
|
||||
thresholdON(100),
|
||||
thresholdOFF(100),
|
||||
localEnergy_temporalConstant(0.5),
|
||||
localEnergy_spatialConstant(5),
|
||||
neighborhoodEnergy_temporalConstant(1),
|
||||
neighborhoodEnergy_spatialConstant(15),
|
||||
contextEnergy_temporalConstant(1),
|
||||
contextEnergy_spatialConstant(75){};
|
||||
// all properties list
|
||||
float thresholdON;
|
||||
float thresholdOFF;
|
||||
//! the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame
|
||||
float localEnergy_temporalConstant;
|
||||
//! the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel
|
||||
float localEnergy_spatialConstant;
|
||||
//! local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis
|
||||
float neighborhoodEnergy_temporalConstant;
|
||||
float neighborhoodEnergy_spatialConstant;
|
||||
//! context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects
|
||||
float contextEnergy_temporalConstant;
|
||||
float contextEnergy_spatialConstant;
|
||||
};
|
||||
|
||||
/** @brief class which provides a transient/moving areas segmentation module
|
||||
|
||||
perform a locally adapted segmentation by using the retina magno input data Based on Alexandre
|
||||
BENOIT thesis: "Le système visuel humain au secours de la vision par ordinateur"
|
||||
|
||||
3 spatio temporal filters are used:
|
||||
- a first one which filters the noise and local variations of the input motion energy
|
||||
- a second (more powerfull low pass spatial filter) which gives the neighborhood motion energy the
|
||||
segmentation consists in the comparison of these both outputs, if the local motion energy is higher
|
||||
to the neighborhood otion energy, then the area is considered as moving and is segmented
|
||||
- a stronger third low pass filter helps decision by providing a smooth information about the
|
||||
"motion context" in a wider area
|
||||
*/
|
||||
|
||||
class CV_EXPORTS_W TransientAreasSegmentationModule: public Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
|
||||
/** @brief return the sze of the manage input and output images
|
||||
*/
|
||||
CV_WRAP virtual Size getSize()=0;
|
||||
|
||||
/** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
|
||||
|
||||
- if the xml file does not exist, then default setup is applied
|
||||
- warning, Exceptions are thrown if read XML file is not valid
|
||||
@param segmentationParameterFile : the parameters filename
|
||||
@param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
|
||||
*/
|
||||
CV_WRAP virtual void setup(String segmentationParameterFile="", const bool applyDefaultSetupOnFailure=true)=0;
|
||||
|
||||
/** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
|
||||
|
||||
- if the xml file does not exist, then default setup is applied
|
||||
- warning, Exceptions are thrown if read XML file is not valid
|
||||
@param fs : the open Filestorage which contains segmentation parameters
|
||||
@param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
|
||||
*/
|
||||
virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
|
||||
|
||||
/** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup
|
||||
|
||||
- if the xml file does not exist, then default setup is applied
|
||||
- warning, Exceptions are thrown if read XML file is not valid
|
||||
@param newParameters : a parameters structures updated with the new target configuration
|
||||
*/
|
||||
virtual void setup(SegmentationParameters newParameters)=0;
|
||||
|
||||
/** @brief return the current parameters setup
|
||||
*/
|
||||
virtual SegmentationParameters getParameters()=0;
|
||||
|
||||
/** @brief parameters setup display method
|
||||
@return a string which contains formatted parameters information
|
||||
*/
|
||||
CV_WRAP virtual const String printSetup()=0;
|
||||
|
||||
/** @brief write xml/yml formated parameters information
|
||||
@param fs : the filename of the xml file that will be open and writen with formatted parameters information
|
||||
*/
|
||||
CV_WRAP virtual void write( String fs ) const=0;
|
||||
|
||||
/** @brief write xml/yml formated parameters information
|
||||
@param fs : a cv::Filestorage object ready to be filled
|
||||
*/
|
||||
virtual void write( cv::FileStorage& fs ) const CV_OVERRIDE = 0;
|
||||
|
||||
/** @brief main processing method, get result using methods getSegmentationPicture()
|
||||
@param inputToSegment : the image to process, it must match the instance buffer size !
|
||||
@param channelIndex : the channel to process in case of multichannel images
|
||||
*/
|
||||
CV_WRAP virtual void run(InputArray inputToSegment, const int channelIndex=0)=0;
|
||||
|
||||
/** @brief access function
|
||||
return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
|
||||
*/
|
||||
CV_WRAP virtual void getSegmentationPicture(OutputArray transientAreas)=0;
|
||||
|
||||
/** @brief cleans all the buffers of the instance
|
||||
*/
|
||||
CV_WRAP virtual void clearAllBuffers()=0;
|
||||
|
||||
/** @brief allocator
|
||||
@param inputSize : size of the images input to segment (output will be the same size)
|
||||
*/
|
||||
CV_WRAP static Ptr<TransientAreasSegmentationModule> create(Size inputSize);
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
||||
}} // namespaces end : cv and bioinspired
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
Reference in New Issue
Block a user