fast-yolo4/3rdparty/opencv/inc/opencv2/rgbd/depth.hpp
2024-09-25 09:43:03 +08:00

1194 lines
40 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_WillowGarage.md file found in this module's directory
#ifndef __OPENCV_RGBD_DEPTH_HPP__
#define __OPENCV_RGBD_DEPTH_HPP__
#include <opencv2/core.hpp>
#include <limits>
namespace cv
{
namespace rgbd
{
//! @addtogroup rgbd
//! @{
/** Checks if the value is a valid depth. For CV_16U or CV_16S, the convention is to be invalid if it is
* a limit. For a float/double, we just check if it is a NaN
* @param depth the depth to check for validity
*/
CV_EXPORTS
inline bool
isValidDepth(const float & depth)
{
return !cvIsNaN(depth);
}
CV_EXPORTS
inline bool
isValidDepth(const double & depth)
{
return !cvIsNaN(depth);
}
CV_EXPORTS
inline bool
isValidDepth(const short int & depth)
{
return (depth != std::numeric_limits<short int>::min()) && (depth != std::numeric_limits<short int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const unsigned short int & depth)
{
return (depth != std::numeric_limits<unsigned short int>::min())
&& (depth != std::numeric_limits<unsigned short int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const int & depth)
{
return (depth != std::numeric_limits<int>::min()) && (depth != std::numeric_limits<int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const unsigned int & depth)
{
return (depth != std::numeric_limits<unsigned int>::min()) && (depth != std::numeric_limits<unsigned int>::max());
}
/** Object that can compute the normals in an image.
* It is an object as it can cache data for speed efficiency
* The implemented methods are either:
* - FALS (the fastest) and SRI from
* ``Fast and Accurate Computation of Surface Normals from Range Images``
* by H. Badino, D. Huber, Y. Park and T. Kanade
* - the normals with bilateral filtering on a depth image from
* ``Gradient Response Maps for Real-Time Detection of Texture-Less Objects``
* by S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit
*/
class CV_EXPORTS_W RgbdNormals: public Algorithm
{
public:
enum RGBD_NORMALS_METHOD
{
RGBD_NORMALS_METHOD_FALS = 0,
RGBD_NORMALS_METHOD_LINEMOD = 1,
RGBD_NORMALS_METHOD_SRI = 2
};
RgbdNormals()
:
rows_(0),
cols_(0),
depth_(0),
K_(Mat()),
window_size_(0),
method_(RGBD_NORMALS_METHOD_FALS),
rgbd_normals_impl_(0)
{
}
/** Constructor
* @param rows the number of rows of the depth image normals will be computed on
* @param cols the number of cols of the depth image normals will be computed on
* @param depth the depth of the normals (only CV_32F or CV_64F)
* @param K the calibration matrix to use
* @param window_size the window size to compute the normals: can only be 1,3,5 or 7
* @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS
*/
RgbdNormals(int rows, int cols, int depth, InputArray K, int window_size = 5, int method =
RgbdNormals::RGBD_NORMALS_METHOD_FALS);
~RgbdNormals();
CV_WRAP static Ptr<RgbdNormals> create(int rows, int cols, int depth, InputArray K, int window_size = 5, int method =
RgbdNormals::RGBD_NORMALS_METHOD_FALS);
/** Given a set of 3d points in a depth image, compute the normals at each point.
* @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S
* @param normals a rows x cols x 3 matrix
*/
CV_WRAP_AS(apply) void
operator()(InputArray points, OutputArray normals) const;
/** Initializes some data that is cached for later computation
* If that function is not called, it will be called the first time normals are computed
*/
CV_WRAP void
initialize() const;
CV_WRAP int getRows() const
{
return rows_;
}
CV_WRAP void setRows(int val)
{
rows_ = val;
}
CV_WRAP int getCols() const
{
return cols_;
}
CV_WRAP void setCols(int val)
{
cols_ = val;
}
CV_WRAP int getWindowSize() const
{
return window_size_;
}
CV_WRAP void setWindowSize(int val)
{
window_size_ = val;
}
CV_WRAP int getDepth() const
{
return depth_;
}
CV_WRAP void setDepth(int val)
{
depth_ = val;
}
CV_WRAP cv::Mat getK() const
{
return K_;
}
CV_WRAP void setK(const cv::Mat &val)
{
K_ = val;
}
CV_WRAP int getMethod() const
{
return method_;
}
CV_WRAP void setMethod(int val)
{
method_ = val;
}
protected:
void
initialize_normals_impl(int rows, int cols, int depth, const Mat & K, int window_size, int method) const;
int rows_, cols_, depth_;
Mat K_;
int window_size_;
int method_;
mutable void* rgbd_normals_impl_;
};
/** Object that can clean a noisy depth image
*/
class CV_EXPORTS_W DepthCleaner: public Algorithm
{
public:
/** NIL method is from
* ``Modeling Kinect Sensor Noise for Improved 3d Reconstruction and Tracking``
* by C. Nguyen, S. Izadi, D. Lovel
*/
enum DEPTH_CLEANER_METHOD
{
DEPTH_CLEANER_NIL
};
DepthCleaner()
:
depth_(0),
window_size_(0),
method_(DEPTH_CLEANER_NIL),
depth_cleaner_impl_(0)
{
}
/** Constructor
* @param depth the depth of the normals (only CV_32F or CV_64F)
* @param window_size the window size to compute the normals: can only be 1,3,5 or 7
* @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS
*/
DepthCleaner(int depth, int window_size = 5, int method = DepthCleaner::DEPTH_CLEANER_NIL);
~DepthCleaner();
CV_WRAP static Ptr<DepthCleaner> create(int depth, int window_size = 5, int method = DepthCleaner::DEPTH_CLEANER_NIL);
/** Given a set of 3d points in a depth image, compute the normals at each point.
* @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S
* @param depth a rows x cols matrix of the cleaned up depth
*/
CV_WRAP_AS(apply) void
operator()(InputArray points, OutputArray depth) const;
/** Initializes some data that is cached for later computation
* If that function is not called, it will be called the first time normals are computed
*/
CV_WRAP void
initialize() const;
CV_WRAP int getWindowSize() const
{
return window_size_;
}
CV_WRAP void setWindowSize(int val)
{
window_size_ = val;
}
CV_WRAP int getDepth() const
{
return depth_;
}
CV_WRAP void setDepth(int val)
{
depth_ = val;
}
CV_WRAP int getMethod() const
{
return method_;
}
CV_WRAP void setMethod(int val)
{
method_ = val;
}
protected:
void
initialize_cleaner_impl() const;
int depth_;
int window_size_;
int method_;
mutable void* depth_cleaner_impl_;
};
/** Registers depth data to an external camera
* Registration is performed by creating a depth cloud, transforming the cloud by
* the rigid body transformation between the cameras, and then projecting the
* transformed points into the RGB camera.
*
* uv_rgb = K_rgb * [R | t] * z * inv(K_ir) * uv_ir
*
* Currently does not check for negative depth values.
*
* @param unregisteredCameraMatrix the camera matrix of the depth camera
* @param registeredCameraMatrix the camera matrix of the external camera
* @param registeredDistCoeffs the distortion coefficients of the external camera
* @param Rt the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame.
* @param unregisteredDepth the input depth data
* @param outputImagePlaneSize the image plane dimensions of the external camera (width, height)
* @param registeredDepth the result of transforming the depth into the external camera
* @param depthDilation whether or not the depth is dilated to avoid holes and occlusion errors (optional)
*/
CV_EXPORTS_W
void
registerDepth(InputArray unregisteredCameraMatrix, InputArray registeredCameraMatrix, InputArray registeredDistCoeffs,
InputArray Rt, InputArray unregisteredDepth, const Size& outputImagePlaneSize,
OutputArray registeredDepth, bool depthDilation=false);
/**
* @param depth the depth image
* @param in_K
* @param in_points the list of xy coordinates
* @param points3d the resulting 3d points
*/
CV_EXPORTS_W
void
depthTo3dSparse(InputArray depth, InputArray in_K, InputArray in_points, OutputArray points3d);
/** Converts a depth image to an organized set of 3d points.
* The coordinate system is x pointing left, y down and z away from the camera
* @param depth the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
* (as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters)
* @param K The calibration matrix
* @param points3d the resulting 3d points. They are of depth the same as `depth` if it is CV_32F or CV_64F, and the
* depth of `K` if `depth` is of depth CV_U
* @param mask the mask of the points to consider (can be empty)
*/
CV_EXPORTS_W
void
depthTo3d(InputArray depth, InputArray K, OutputArray points3d, InputArray mask = noArray());
/** If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided
* by depth_factor to get a depth in meters, and the values 0 are converted to std::numeric_limits<float>::quiet_NaN()
* Otherwise, the image is simply converted to floats
* @param in the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
* (as done with the Microsoft Kinect), it is assumed in meters)
* @param depth the desired output depth (floats or double)
* @param out The rescaled float depth image
* @param depth_factor (optional) factor by which depth is converted to distance (by default = 1000.0 for Kinect sensor)
*/
CV_EXPORTS_W
void
rescaleDepth(InputArray in, int depth, OutputArray out, double depth_factor = 1000.0);
/** Object that can compute planes in an image
*/
class CV_EXPORTS_W RgbdPlane: public Algorithm
{
public:
enum RGBD_PLANE_METHOD
{
RGBD_PLANE_METHOD_DEFAULT
};
RgbdPlane(int method = RgbdPlane::RGBD_PLANE_METHOD_DEFAULT)
:
method_(method),
block_size_(40),
min_size_(block_size_*block_size_),
threshold_(0.01),
sensor_error_a_(0),
sensor_error_b_(0),
sensor_error_c_(0)
{
}
/** Constructor
* @param block_size The size of the blocks to look at for a stable MSE
* @param min_size The minimum size of a cluster to be considered a plane
* @param threshold The maximum distance of a point from a plane to belong to it (in meters)
* @param sensor_error_a coefficient of the sensor error. 0 by default, 0.0075 for a Kinect
* @param sensor_error_b coefficient of the sensor error. 0 by default
* @param sensor_error_c coefficient of the sensor error. 0 by default
* @param method The method to use to compute the planes.
*/
RgbdPlane(int method, int block_size,
int min_size, double threshold, double sensor_error_a = 0,
double sensor_error_b = 0, double sensor_error_c = 0);
~RgbdPlane();
CV_WRAP static Ptr<RgbdPlane> create(int method, int block_size, int min_size, double threshold,
double sensor_error_a = 0, double sensor_error_b = 0,
double sensor_error_c = 0);
/** Find The planes in a depth image
* @param points3d the 3d points organized like the depth image: rows x cols with 3 channels
* @param normals the normals for every point in the depth image
* @param mask An image where each pixel is labeled with the plane it belongs to
* and 255 if it does not belong to any plane
* @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1
* and c < 0 (so that the normal points towards the camera)
*/
CV_WRAP_AS(apply) void
operator()(InputArray points3d, InputArray normals, OutputArray mask,
OutputArray plane_coefficients);
/** Find The planes in a depth image but without doing a normal check, which is faster but less accurate
* @param points3d the 3d points organized like the depth image: rows x cols with 3 channels
* @param mask An image where each pixel is labeled with the plane it belongs to
* and 255 if it does not belong to any plane
* @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0
*/
CV_WRAP_AS(apply) void
operator()(InputArray points3d, OutputArray mask, OutputArray plane_coefficients);
CV_WRAP int getBlockSize() const
{
return block_size_;
}
CV_WRAP void setBlockSize(int val)
{
block_size_ = val;
}
CV_WRAP int getMinSize() const
{
return min_size_;
}
CV_WRAP void setMinSize(int val)
{
min_size_ = val;
}
CV_WRAP int getMethod() const
{
return method_;
}
CV_WRAP void setMethod(int val)
{
method_ = val;
}
CV_WRAP double getThreshold() const
{
return threshold_;
}
CV_WRAP void setThreshold(double val)
{
threshold_ = val;
}
CV_WRAP double getSensorErrorA() const
{
return sensor_error_a_;
}
CV_WRAP void setSensorErrorA(double val)
{
sensor_error_a_ = val;
}
CV_WRAP double getSensorErrorB() const
{
return sensor_error_b_;
}
CV_WRAP void setSensorErrorB(double val)
{
sensor_error_b_ = val;
}
CV_WRAP double getSensorErrorC() const
{
return sensor_error_c_;
}
CV_WRAP void setSensorErrorC(double val)
{
sensor_error_c_ = val;
}
private:
/** The method to use to compute the planes */
int method_;
/** The size of the blocks to look at for a stable MSE */
int block_size_;
/** The minimum size of a cluster to be considered a plane */
int min_size_;
/** How far a point can be from a plane to belong to it (in meters) */
double threshold_;
/** coefficient of the sensor error with respect to the. All 0 by default but you want a=0.0075 for a Kinect */
double sensor_error_a_, sensor_error_b_, sensor_error_c_;
};
/** Object that contains a frame data.
*/
struct CV_EXPORTS_W RgbdFrame
{
RgbdFrame();
RgbdFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
virtual ~RgbdFrame();
CV_WRAP static Ptr<RgbdFrame> create(const Mat& image=Mat(), const Mat& depth=Mat(), const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
CV_WRAP virtual void
release();
CV_PROP int ID;
CV_PROP Mat image;
CV_PROP Mat depth;
CV_PROP Mat mask;
CV_PROP Mat normals;
};
/** Object that contains a frame data that is possibly needed for the Odometry.
* It's used for the efficiency (to pass precomputed/cached data of the frame that participates
* in the Odometry processing several times).
*/
struct CV_EXPORTS_W OdometryFrame : public RgbdFrame
{
/** These constants are used to set a type of cache which has to be prepared depending on the frame role:
* srcFrame or dstFrame (see compute method of the Odometry class). For the srcFrame and dstFrame different cache data may be required,
* some part of a cache may be common for both frame roles.
* @param CACHE_SRC The cache data for the srcFrame will be prepared.
* @param CACHE_DST The cache data for the dstFrame will be prepared.
* @param CACHE_ALL The cache data for both srcFrame and dstFrame roles will be computed.
*/
enum
{
CACHE_SRC = 1, CACHE_DST = 2, CACHE_ALL = CACHE_SRC + CACHE_DST
};
OdometryFrame();
OdometryFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
CV_WRAP static Ptr<OdometryFrame> create(const Mat& image=Mat(), const Mat& depth=Mat(), const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
CV_WRAP virtual void
release() CV_OVERRIDE;
CV_WRAP void
releasePyramids();
CV_PROP std::vector<Mat> pyramidImage;
CV_PROP std::vector<Mat> pyramidDepth;
CV_PROP std::vector<Mat> pyramidMask;
CV_PROP std::vector<Mat> pyramidCloud;
CV_PROP std::vector<Mat> pyramid_dI_dx;
CV_PROP std::vector<Mat> pyramid_dI_dy;
CV_PROP std::vector<Mat> pyramidTexturedMask;
CV_PROP std::vector<Mat> pyramidNormals;
CV_PROP std::vector<Mat> pyramidNormalsMask;
};
/** Base class for computation of odometry.
*/
class CV_EXPORTS_W Odometry: public Algorithm
{
public:
/** A class of transformation*/
enum
{
ROTATION = 1, TRANSLATION = 2, RIGID_BODY_MOTION = 4
};
CV_WRAP static inline float
DEFAULT_MIN_DEPTH()
{
return 0.f; // in meters
}
CV_WRAP static inline float
DEFAULT_MAX_DEPTH()
{
return 4.f; // in meters
}
CV_WRAP static inline float
DEFAULT_MAX_DEPTH_DIFF()
{
return 0.07f; // in meters
}
CV_WRAP static inline float
DEFAULT_MAX_POINTS_PART()
{
return 0.07f; // in [0, 1]
}
CV_WRAP static inline float
DEFAULT_MAX_TRANSLATION()
{
return 0.15f; // in meters
}
CV_WRAP static inline float
DEFAULT_MAX_ROTATION()
{
return 15; // in degrees
}
/** Method to compute a transformation from the source frame to the destination one.
* Some odometry algorithms do not used some data of frames (eg. ICP does not use images).
* In such case corresponding arguments can be set as empty Mat.
* The method returns true if all internal computations were possible (e.g. there were enough correspondences,
* system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided
* by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation).
* @param srcImage Image data of the source frame (CV_8UC1)
* @param srcDepth Depth data of the source frame (CV_32FC1, in meters)
* @param srcMask Mask that sets which pixels have to be used from the source frame (CV_8UC1)
* @param dstImage Image data of the destination frame (CV_8UC1)
* @param dstDepth Depth data of the destination frame (CV_32FC1, in meters)
* @param dstMask Mask that sets which pixels have to be used from the destination frame (CV_8UC1)
* @param Rt Resulting transformation from the source frame to the destination one (rigid body motion):
dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is
homogeneous point in the source frame,
Rt is 4x4 matrix of CV_64FC1 type.
* @param initRt Initial transformation from the source frame to the destination one (optional)
*/
CV_WRAP bool
compute(const Mat& srcImage, const Mat& srcDepth, const Mat& srcMask, const Mat& dstImage, const Mat& dstDepth,
const Mat& dstMask, OutputArray Rt, const Mat& initRt = Mat()) const;
/** One more method to compute a transformation from the source frame to the destination one.
* It is designed to save on computing the frame data (image pyramids, normals, etc.).
*/
CV_WRAP_AS(compute2) bool
compute(Ptr<OdometryFrame>& srcFrame, Ptr<OdometryFrame>& dstFrame, OutputArray Rt, const Mat& initRt = Mat()) const;
/** Prepare a cache for the frame. The function checks the precomputed/passed data (throws the error if this data
* does not satisfy) and computes all remaining cache data needed for the frame. Returned size is a resolution
* of the prepared frame.
* @param frame The odometry which will process the frame.
* @param cacheType The cache type: CACHE_SRC, CACHE_DST or CACHE_ALL.
*/
CV_WRAP virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
CV_WRAP static Ptr<Odometry> create(const String & odometryType);
/** @see setCameraMatrix */
CV_WRAP virtual cv::Mat getCameraMatrix() const = 0;
/** @copybrief getCameraMatrix @see getCameraMatrix */
CV_WRAP virtual void setCameraMatrix(const cv::Mat &val) = 0;
/** @see setTransformType */
CV_WRAP virtual int getTransformType() const = 0;
/** @copybrief getTransformType @see getTransformType */
CV_WRAP virtual void setTransformType(int val) = 0;
protected:
virtual void
checkParams() const = 0;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, OutputArray Rt,
const Mat& initRt) const = 0;
};
/** Odometry based on the paper "Real-Time Visual Odometry from Dense RGB-D Images",
* F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
*/
class CV_EXPORTS_W RgbdOdometry: public Odometry
{
public:
RgbdOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used (in meters)
* @param maxDepth Pixels with depth larger than maxDepth will not be used (in meters)
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff (in meters)
* @param iterCounts Count of iterations on each pyramid level.
* @param minGradientMagnitudes For each pyramid level the pixels will be filtered out
* if they have gradient magnitude less than minGradientMagnitudes[level].
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param transformType Class of transformation
*/
RgbdOdometry(const Mat& cameraMatrix, float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(),
float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), const std::vector<int>& iterCounts = std::vector<int>(),
const std::vector<float>& minGradientMagnitudes = std::vector<float>(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(),
int transformType = Odometry::RIGID_BODY_MOTION);
CV_WRAP static Ptr<RgbdOdometry> create(const Mat& cameraMatrix = Mat(), float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(),
float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), const std::vector<int>& iterCounts = std::vector<int>(),
const std::vector<float>& minGradientMagnitudes = std::vector<float>(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(),
int transformType = Odometry::RIGID_BODY_MOTION);
CV_WRAP virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const CV_OVERRIDE;
CV_WRAP cv::Mat getCameraMatrix() const CV_OVERRIDE
{
return cameraMatrix;
}
CV_WRAP void setCameraMatrix(const cv::Mat &val) CV_OVERRIDE
{
cameraMatrix = val;
}
CV_WRAP double getMinDepth() const
{
return minDepth;
}
CV_WRAP void setMinDepth(double val)
{
minDepth = val;
}
CV_WRAP double getMaxDepth() const
{
return maxDepth;
}
CV_WRAP void setMaxDepth(double val)
{
maxDepth = val;
}
CV_WRAP double getMaxDepthDiff() const
{
return maxDepthDiff;
}
CV_WRAP void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
CV_WRAP cv::Mat getIterationCounts() const
{
return iterCounts;
}
CV_WRAP void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
CV_WRAP cv::Mat getMinGradientMagnitudes() const
{
return minGradientMagnitudes;
}
CV_WRAP void setMinGradientMagnitudes(const cv::Mat &val)
{
minGradientMagnitudes = val;
}
CV_WRAP double getMaxPointsPart() const
{
return maxPointsPart;
}
CV_WRAP void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
CV_WRAP int getTransformType() const CV_OVERRIDE
{
return transformType;
}
CV_WRAP void setTransformType(int val) CV_OVERRIDE
{
transformType = val;
}
CV_WRAP double getMaxTranslation() const
{
return maxTranslation;
}
CV_WRAP void setMaxTranslation(double val)
{
maxTranslation = val;
}
CV_WRAP double getMaxRotation() const
{
return maxRotation;
}
CV_WRAP void setMaxRotation(double val)
{
maxRotation = val;
}
protected:
virtual void
checkParams() const CV_OVERRIDE;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, OutputArray Rt,
const Mat& initRt) const CV_OVERRIDE;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*vector<int>*/
Mat iterCounts;
/*vector<float>*/
Mat minGradientMagnitudes;
double maxPointsPart;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
};
/** Odometry based on the paper "KinectFusion: Real-Time Dense Surface Mapping and Tracking",
* Richard A. Newcombe, Andrew Fitzgibbon, at al, SIGGRAPH, 2011.
*/
class CV_EXPORTS_W ICPOdometry: public Odometry
{
public:
ICPOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used
* @param maxDepth Pixels with depth larger than maxDepth will not be used
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param iterCounts Count of iterations on each pyramid level.
* @param transformType Class of trasformation
*/
ICPOdometry(const Mat& cameraMatrix, float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(),
float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(),
const std::vector<int>& iterCounts = std::vector<int>(), int transformType = Odometry::RIGID_BODY_MOTION);
CV_WRAP static Ptr<ICPOdometry> create(const Mat& cameraMatrix = Mat(), float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(),
float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(),
const std::vector<int>& iterCounts = std::vector<int>(), int transformType = Odometry::RIGID_BODY_MOTION);
CV_WRAP virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const CV_OVERRIDE;
CV_WRAP cv::Mat getCameraMatrix() const CV_OVERRIDE
{
return cameraMatrix;
}
CV_WRAP void setCameraMatrix(const cv::Mat &val) CV_OVERRIDE
{
cameraMatrix = val;
}
CV_WRAP double getMinDepth() const
{
return minDepth;
}
CV_WRAP void setMinDepth(double val)
{
minDepth = val;
}
CV_WRAP double getMaxDepth() const
{
return maxDepth;
}
CV_WRAP void setMaxDepth(double val)
{
maxDepth = val;
}
CV_WRAP double getMaxDepthDiff() const
{
return maxDepthDiff;
}
CV_WRAP void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
CV_WRAP cv::Mat getIterationCounts() const
{
return iterCounts;
}
CV_WRAP void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
CV_WRAP double getMaxPointsPart() const
{
return maxPointsPart;
}
CV_WRAP void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
CV_WRAP int getTransformType() const CV_OVERRIDE
{
return transformType;
}
CV_WRAP void setTransformType(int val) CV_OVERRIDE
{
transformType = val;
}
CV_WRAP double getMaxTranslation() const
{
return maxTranslation;
}
CV_WRAP void setMaxTranslation(double val)
{
maxTranslation = val;
}
CV_WRAP double getMaxRotation() const
{
return maxRotation;
}
CV_WRAP void setMaxRotation(double val)
{
maxRotation = val;
}
CV_WRAP Ptr<RgbdNormals> getNormalsComputer() const
{
return normalsComputer;
}
protected:
virtual void
checkParams() const CV_OVERRIDE;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, OutputArray Rt,
const Mat& initRt) const CV_OVERRIDE;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*float*/
double maxPointsPart;
/*vector<int>*/
Mat iterCounts;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
mutable Ptr<RgbdNormals> normalsComputer;
};
/** Odometry that merges RgbdOdometry and ICPOdometry by minimize sum of their energy functions.
*/
class CV_EXPORTS_W RgbdICPOdometry: public Odometry
{
public:
RgbdICPOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used
* @param maxDepth Pixels with depth larger than maxDepth will not be used
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param iterCounts Count of iterations on each pyramid level.
* @param minGradientMagnitudes For each pyramid level the pixels will be filtered out
* if they have gradient magnitude less than minGradientMagnitudes[level].
* @param transformType Class of trasformation
*/
RgbdICPOdometry(const Mat& cameraMatrix, float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(),
float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(),
const std::vector<int>& iterCounts = std::vector<int>(),
const std::vector<float>& minGradientMagnitudes = std::vector<float>(),
int transformType = Odometry::RIGID_BODY_MOTION);
CV_WRAP static Ptr<RgbdICPOdometry> create(const Mat& cameraMatrix = Mat(), float minDepth = Odometry::DEFAULT_MIN_DEPTH(), float maxDepth = Odometry::DEFAULT_MAX_DEPTH(),
float maxDepthDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = Odometry::DEFAULT_MAX_POINTS_PART(),
const std::vector<int>& iterCounts = std::vector<int>(),
const std::vector<float>& minGradientMagnitudes = std::vector<float>(),
int transformType = Odometry::RIGID_BODY_MOTION);
CV_WRAP virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const CV_OVERRIDE;
CV_WRAP cv::Mat getCameraMatrix() const CV_OVERRIDE
{
return cameraMatrix;
}
CV_WRAP void setCameraMatrix(const cv::Mat &val) CV_OVERRIDE
{
cameraMatrix = val;
}
CV_WRAP double getMinDepth() const
{
return minDepth;
}
CV_WRAP void setMinDepth(double val)
{
minDepth = val;
}
CV_WRAP double getMaxDepth() const
{
return maxDepth;
}
CV_WRAP void setMaxDepth(double val)
{
maxDepth = val;
}
CV_WRAP double getMaxDepthDiff() const
{
return maxDepthDiff;
}
CV_WRAP void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
CV_WRAP double getMaxPointsPart() const
{
return maxPointsPart;
}
CV_WRAP void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
CV_WRAP cv::Mat getIterationCounts() const
{
return iterCounts;
}
CV_WRAP void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
CV_WRAP cv::Mat getMinGradientMagnitudes() const
{
return minGradientMagnitudes;
}
CV_WRAP void setMinGradientMagnitudes(const cv::Mat &val)
{
minGradientMagnitudes = val;
}
CV_WRAP int getTransformType() const CV_OVERRIDE
{
return transformType;
}
CV_WRAP void setTransformType(int val) CV_OVERRIDE
{
transformType = val;
}
CV_WRAP double getMaxTranslation() const
{
return maxTranslation;
}
CV_WRAP void setMaxTranslation(double val)
{
maxTranslation = val;
}
CV_WRAP double getMaxRotation() const
{
return maxRotation;
}
CV_WRAP void setMaxRotation(double val)
{
maxRotation = val;
}
CV_WRAP Ptr<RgbdNormals> getNormalsComputer() const
{
return normalsComputer;
}
protected:
virtual void
checkParams() const CV_OVERRIDE;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, OutputArray Rt,
const Mat& initRt) const CV_OVERRIDE;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*float*/
double maxPointsPart;
/*vector<int>*/
Mat iterCounts;
/*vector<float>*/
Mat minGradientMagnitudes;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
mutable Ptr<RgbdNormals> normalsComputer;
};
/** A faster version of ICPOdometry which is used in KinectFusion implementation
* Partial list of differences:
* - Works in parallel
* - Written in universal intrinsics
* - Filters points by angle
* - Interpolates points and normals
* - Doesn't use masks or min/max depth filtering
* - Doesn't use random subsets of points
* - Supports only Rt transform type
* - Supports only 4-float vectors as input type
*/
class CV_EXPORTS_W FastICPOdometry: public Odometry
{
public:
FastICPOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param maxDistDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff
* @param angleThreshold Correspondence will be filtered out
* if an angle between their normals is bigger than threshold
* @param sigmaDepth Depth sigma in meters for bilateral smooth
* @param sigmaSpatial Spatial sigma in pixels for bilateral smooth
* @param kernelSize Kernel size in pixels for bilateral smooth
* @param iterCounts Count of iterations on each pyramid level
*/
FastICPOdometry(const Mat& cameraMatrix,
float maxDistDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(),
float angleThreshold = (float)(30. * CV_PI / 180.),
float sigmaDepth = 0.04f,
float sigmaSpatial = 4.5f,
int kernelSize = 7,
const std::vector<int>& iterCounts = std::vector<int>());
CV_WRAP static Ptr<FastICPOdometry> create(const Mat& cameraMatrix,
float maxDistDiff = Odometry::DEFAULT_MAX_DEPTH_DIFF(),
float angleThreshold = (float)(30. * CV_PI / 180.),
float sigmaDepth = 0.04f,
float sigmaSpatial = 4.5f,
int kernelSize = 7,
const std::vector<int>& iterCounts = std::vector<int>());
CV_WRAP virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const CV_OVERRIDE;
CV_WRAP cv::Mat getCameraMatrix() const CV_OVERRIDE
{
return cameraMatrix;
}
CV_WRAP void setCameraMatrix(const cv::Mat &val) CV_OVERRIDE
{
cameraMatrix = val;
}
CV_WRAP double getMaxDistDiff() const
{
return maxDistDiff;
}
CV_WRAP void setMaxDistDiff(float val)
{
maxDistDiff = val;
}
CV_WRAP float getAngleThreshold() const
{
return angleThreshold;
}
CV_WRAP void setAngleThreshold(float f)
{
angleThreshold = f;
}
CV_WRAP float getSigmaDepth() const
{
return sigmaDepth;
}
CV_WRAP void setSigmaDepth(float f)
{
sigmaDepth = f;
}
CV_WRAP float getSigmaSpatial() const
{
return sigmaSpatial;
}
CV_WRAP void setSigmaSpatial(float f)
{
sigmaSpatial = f;
}
CV_WRAP int getKernelSize() const
{
return kernelSize;
}
CV_WRAP void setKernelSize(int f)
{
kernelSize = f;
}
CV_WRAP cv::Mat getIterationCounts() const
{
return iterCounts;
}
CV_WRAP void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
CV_WRAP int getTransformType() const CV_OVERRIDE
{
return Odometry::RIGID_BODY_MOTION;
}
CV_WRAP void setTransformType(int val) CV_OVERRIDE
{
if(val != Odometry::RIGID_BODY_MOTION)
throw std::runtime_error("Rigid Body Motion is the only accepted transformation type"
" for this odometry method");
}
protected:
virtual void
checkParams() const CV_OVERRIDE;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, OutputArray Rt,
const Mat& initRt) const CV_OVERRIDE;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
float maxDistDiff;
float angleThreshold;
float sigmaDepth;
float sigmaSpatial;
int kernelSize;
/*vector<int>*/
Mat iterCounts;
Mat cameraMatrix;
};
/** Warp the image: compute 3d points from the depth, transform them using given transformation,
* then project color point cloud to an image plane.
* This function can be used to visualize results of the Odometry algorithm.
* @param image The image (of CV_8UC1 or CV_8UC3 type)
* @param depth The depth (of type used in depthTo3d fuction)
* @param mask The mask of used pixels (of CV_8UC1), it can be empty
* @param Rt The transformation that will be applied to the 3d points computed from the depth
* @param cameraMatrix Camera matrix
* @param distCoeff Distortion coefficients
* @param warpedImage The warped image.
* @param warpedDepth The warped depth.
* @param warpedMask The warped mask.
*/
CV_EXPORTS_W
void
warpFrame(const Mat& image, const Mat& depth, const Mat& mask, const Mat& Rt, const Mat& cameraMatrix,
const Mat& distCoeff, OutputArray warpedImage, OutputArray warpedDepth = noArray(), OutputArray warpedMask = noArray());
// TODO Depth interpolation
// Curvature
// Get rescaleDepth return dubles if asked for
//! @}
} /* namespace rgbd */
} /* namespace cv */
#endif
/* End of file. */