fast-yolo4/3rdparty/opencv/inc/opencv2/ximgproc/structured_edge_detection.hpp

149 lines
5.6 KiB
C++
Raw Normal View History

2024-09-25 09:43:03 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__
#define __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__
#ifdef __cplusplus
/** @file
@date Jun 17, 2014
@author Yury Gitman
*/
#include <opencv2/core.hpp>
namespace cv
{
namespace ximgproc
{
//! @addtogroup ximgproc_edge
//! @{
/*!
Helper class for training part of [P. Dollar and C. L. Zitnick. Structured Forests for Fast Edge Detection, 2013].
*/
class CV_EXPORTS_W RFFeatureGetter : public Algorithm
{
public:
/*!
* This functions extracts feature channels from src.
* Than StructureEdgeDetection uses this feature space
* to detect edges.
*
* \param src : source image to extract features
* \param features : output n-channel floating point feature matrix.
*
* \param gnrmRad : __rf.options.gradientNormalizationRadius
* \param gsmthRad : __rf.options.gradientSmoothingRadius
* \param shrink : __rf.options.shrinkNumber
* \param outNum : __rf.options.numberOfOutputChannels
* \param gradNum : __rf.options.numberOfGradientOrientations
*/
CV_WRAP virtual void getFeatures(const Mat &src, Mat &features,
const int gnrmRad,
const int gsmthRad,
const int shrink,
const int outNum,
const int gradNum) const = 0;
};
CV_EXPORTS_W Ptr<RFFeatureGetter> createRFFeatureGetter();
/** @brief Class implementing edge detection algorithm from @cite Dollar2013 :
*/
class CV_EXPORTS_W StructuredEdgeDetection : public Algorithm
{
public:
/** @brief The function detects edges in src and draw them to dst.
The algorithm underlies this function is much more robust to texture presence, than common
approaches, e.g. Sobel
@param src source image (RGB, float, in [0;1]) to detect edges
@param dst destination image (grayscale, float, in [0;1]) where edges are drawn
@sa Sobel, Canny
*/
CV_WRAP virtual void detectEdges(cv::InputArray src, cv::OutputArray dst) const = 0;
/** @brief The function computes orientation from edge image.
@param src edge image.
@param dst orientation image.
*/
CV_WRAP virtual void computeOrientation(cv::InputArray src, cv::OutputArray dst) const = 0;
/** @brief The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction.
@param edge_image edge image from detectEdges function.
@param orientation_image orientation image from computeOrientation function.
@param dst suppressed image (grayscale, float, in [0;1])
@param r radius for NMS suppression.
@param s radius for boundary suppression.
@param m multiplier for conservative suppression.
@param isParallel enables/disables parallel computing.
*/
CV_WRAP virtual void edgesNms(cv::InputArray edge_image, cv::InputArray orientation_image, cv::OutputArray dst, int r = 2, int s = 0, float m = 1, bool isParallel = true) const = 0;
};
/*!
* The only constructor
*
* \param model : name of the file where the model is stored
* \param howToGetFeatures : optional object inheriting from RFFeatureGetter.
* You need it only if you would like to train your
* own forest, pass NULL otherwise
*/
CV_EXPORTS_W Ptr<StructuredEdgeDetection> createStructuredEdgeDetection(const String &model,
Ptr<const RFFeatureGetter> howToGetFeatures = Ptr<RFFeatureGetter>());
//! @}
}
}
#endif
#endif /* __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__ */