149 lines
5.6 KiB
C++
149 lines
5.6 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__
|
|
#define __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__
|
|
#ifdef __cplusplus
|
|
|
|
/** @file
|
|
@date Jun 17, 2014
|
|
@author Yury Gitman
|
|
*/
|
|
|
|
#include <opencv2/core.hpp>
|
|
|
|
namespace cv
|
|
{
|
|
namespace ximgproc
|
|
{
|
|
|
|
//! @addtogroup ximgproc_edge
|
|
//! @{
|
|
|
|
/*!
|
|
Helper class for training part of [P. Dollar and C. L. Zitnick. Structured Forests for Fast Edge Detection, 2013].
|
|
*/
|
|
class CV_EXPORTS_W RFFeatureGetter : public Algorithm
|
|
{
|
|
public:
|
|
|
|
/*!
|
|
* This functions extracts feature channels from src.
|
|
* Than StructureEdgeDetection uses this feature space
|
|
* to detect edges.
|
|
*
|
|
* \param src : source image to extract features
|
|
* \param features : output n-channel floating point feature matrix.
|
|
*
|
|
* \param gnrmRad : __rf.options.gradientNormalizationRadius
|
|
* \param gsmthRad : __rf.options.gradientSmoothingRadius
|
|
* \param shrink : __rf.options.shrinkNumber
|
|
* \param outNum : __rf.options.numberOfOutputChannels
|
|
* \param gradNum : __rf.options.numberOfGradientOrientations
|
|
*/
|
|
CV_WRAP virtual void getFeatures(const Mat &src, Mat &features,
|
|
const int gnrmRad,
|
|
const int gsmthRad,
|
|
const int shrink,
|
|
const int outNum,
|
|
const int gradNum) const = 0;
|
|
};
|
|
|
|
CV_EXPORTS_W Ptr<RFFeatureGetter> createRFFeatureGetter();
|
|
|
|
|
|
|
|
/** @brief Class implementing edge detection algorithm from @cite Dollar2013 :
|
|
*/
|
|
class CV_EXPORTS_W StructuredEdgeDetection : public Algorithm
|
|
{
|
|
public:
|
|
|
|
/** @brief The function detects edges in src and draw them to dst.
|
|
|
|
The algorithm underlies this function is much more robust to texture presence, than common
|
|
approaches, e.g. Sobel
|
|
@param src source image (RGB, float, in [0;1]) to detect edges
|
|
@param dst destination image (grayscale, float, in [0;1]) where edges are drawn
|
|
@sa Sobel, Canny
|
|
*/
|
|
CV_WRAP virtual void detectEdges(cv::InputArray src, cv::OutputArray dst) const = 0;
|
|
|
|
/** @brief The function computes orientation from edge image.
|
|
|
|
@param src edge image.
|
|
@param dst orientation image.
|
|
*/
|
|
CV_WRAP virtual void computeOrientation(cv::InputArray src, cv::OutputArray dst) const = 0;
|
|
|
|
|
|
/** @brief The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction.
|
|
|
|
@param edge_image edge image from detectEdges function.
|
|
@param orientation_image orientation image from computeOrientation function.
|
|
@param dst suppressed image (grayscale, float, in [0;1])
|
|
@param r radius for NMS suppression.
|
|
@param s radius for boundary suppression.
|
|
@param m multiplier for conservative suppression.
|
|
@param isParallel enables/disables parallel computing.
|
|
*/
|
|
CV_WRAP virtual void edgesNms(cv::InputArray edge_image, cv::InputArray orientation_image, cv::OutputArray dst, int r = 2, int s = 0, float m = 1, bool isParallel = true) const = 0;
|
|
};
|
|
|
|
/*!
|
|
* The only constructor
|
|
*
|
|
* \param model : name of the file where the model is stored
|
|
* \param howToGetFeatures : optional object inheriting from RFFeatureGetter.
|
|
* You need it only if you would like to train your
|
|
* own forest, pass NULL otherwise
|
|
*/
|
|
CV_EXPORTS_W Ptr<StructuredEdgeDetection> createStructuredEdgeDetection(const String &model,
|
|
Ptr<const RFFeatureGetter> howToGetFeatures = Ptr<RFFeatureGetter>());
|
|
|
|
//! @}
|
|
|
|
}
|
|
}
|
|
#endif
|
|
#endif /* __OPENCV_STRUCTURED_EDGE_DETECTION_HPP__ */
|